1
|
Andreeva TD, Stoichev S, Taneva SG, Krastev R. Hybrid graphene oxide/polysaccharide nanocomposites with controllable surface properties and biocompatibility. Carbohydr Polym 2018; 181:78-85. [DOI: 10.1016/j.carbpol.2017.10.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
|
2
|
Gabriel D, Monteiro IP, Huang D, Langer R, Kohane DS. A photo-triggered layered surface coating producing reactive oxygen species. Biomaterials 2013; 34:9763-9. [PMID: 24074838 DOI: 10.1016/j.biomaterials.2013.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/05/2013] [Indexed: 01/15/2023]
Abstract
We report a photoactive surface coating which produces cytotoxic reactive oxygen species (ROS) upon irradiation with near infrared (NIR) light. The coating is assembled layer-by-layer, and consists of cross-linked hyaluronic acid (HA) and poly-l-lysine (PLL) modified with the photoactive molecule pheophorbide a. Pheophorbide a loading can be fine-tuned by varying the number of bilayers, yielding stable materials with the capacity to generate repeated and/or prolonged light-triggered ROS release. Light irradiation of the photoactive surface coatings provides a versatile platform for the spatiotemporal control of events at the material-tissue interface, such as bacterial colonization, platelet adhesion, and mammalian cell attachment.
Collapse
Affiliation(s)
- Doris Gabriel
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
3
|
Palamà IE, D'Amone S, Coluccia AML, Gigli G. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media. Biotechnol Bioeng 2012; 110:586-96. [PMID: 22886558 DOI: 10.1002/bit.24626] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
Alignment of skeletal myoblasts is considered a critical step during myotube formation. The C2C12 cell line is frequently used as a model of skeletal muscle differentiation that can be induced by lowering the serum concentration in standard culture flasks. In order to mimic the striated architectures of skeletal muscles in vitro, micro-patterning techniques and surface engineering have been proven as useful approaches for promoting elongation and alignment of C2C12 myoblasts, thereby enhancing the outgrowth of multi-nucleated myotubes upon switching from growth media (GM) to differentiative media (DM). Herein, a layer-by-layer (LbL) polyelectrolyte multilayer deposition was combined with a micro-molding in capillaries (MIMIC) method to simultaneously provide biochemical and geometrical instructive cues that induced the formation of tightly apposed and parallel arrays of differentiating myotubes from C2C12 cells maintained in GM media for 15 days. This study focuses on two different types of patterned/self-assembled nanofilms based on alternated layers of poly (allylamine hydrochloride) (PAH)/poly(sodium 4-styrene-sulfonate) (PSS) as biocompatible but not biodegradable polymeric structures, or poly-L-arginine sulfate salt (pARG)/dextran sulfate sodium salt (DXS) as both biocompatible and biodegradable surfaces. The influence of these microstructures as well as of the nanofilm composition on C2C12 skeletal muscle cells' differentiation and viability was evaluated and quantified, pointing to give a reference for skeletal muscle regenerative potential in culture conditions that do not promote it. At this regard, our results validate PEM microstructured devices, to a greater extent for (PAH/PSS)₅-coated microgrooves, as biocompatible and innovative tools for tissue engineering applications and molecular dissection of events controlling C2C12 skeletal muscle regeneration without switching to their optimal differentiative culture media in vitro.
Collapse
Affiliation(s)
- Ilaria E Palamà
- NNL, CNR-Institute of Nanoscience, Via Arnesano, Lecce 73100, Italy.
| | | | | | | |
Collapse
|
4
|
Crouzier T, Sailhan F, Becquart P, Guillot R, Logeart-Avramoglou D, Picart C. The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials 2011; 32:7543-54. [DOI: 10.1016/j.biomaterials.2011.06.062] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/25/2011] [Indexed: 12/19/2022]
|
5
|
Valentín-Rodríguez C, He Y, Chodavarapu SS, Smith M, Roach AS, Lewis NR, Vaid S, Lin T, Lord DE, Green SM, Tezel TH, Ivanisevic A. Tuning the adhesion of layer-by-layer films to the physicochemical properties of inner limiting membranes using nanoparticles. Micron 2011; 42:616-24. [DOI: 10.1016/j.micron.2011.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/23/2011] [Accepted: 02/26/2011] [Indexed: 11/16/2022]
|
6
|
Zawko SA, Schmidt CE. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers. J Biomed Mater Res A 2011; 98:287-95. [PMID: 21626660 DOI: 10.1002/jbm.a.33114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/10/2011] [Accepted: 03/24/2011] [Indexed: 11/05/2022]
Abstract
An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts.
Collapse
Affiliation(s)
- Scott A Zawko
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | | |
Collapse
|
7
|
Surface interpenetrating networks of polyacrylamide in poly(ethylene terephthalate) as a means of surface modification. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2010.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Wu S, Garfield LB, Rupert NE, Grady BP, Funkhouser GP. Strength improvement via coating of a cylindrical hole by layer-by-layer assembled polymer particles. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1220-1227. [PMID: 20423142 DOI: 10.1021/am1000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Negatively charged colloidal poly(methyl methacrylate-co-butyl acrylate) (P(MMA-BA)) particles and positively charged dissolved poly(ethyleneimine) (PEI) were adsorbed onto a cement block using a layer-by-layer (LBL) assembly technique. The block was fashioned so as to have a cylindrical hole running from one face to another along the long axis of the rectangular block, and a fluid containing either of the two charged materials was pumped through the block. The result was a film tens of micrometers thick, and the pressure required to crack the cement block was measured after one end of the hole was sealed. Latex particles with a T(g) near the use temperature showed the maximum improvement in the cracking stress of the blocks. In a multilayer coating with identically sized particles, the cracking stress of the blocks increased to an improvement of 25% and then dropped off with increasing number of layers, even though the relationship between film thickness and the number of layers was linear. An improvement of about 30% in the cracking stress of the coated blocks was obtained when using multiple layers with different particle sizes. The effects of the number of layers and particle size on the cracking stress suggest that both the morphology and the thickness of the film play a role in performance. Tests done under confinement, e.g., with an external stress applied to the outside of the blocks, suggest that not only does a film-forming mechanism contribute to performance but that filling of microcracks in the rock may also play a role.
Collapse
Affiliation(s)
- Shuqing Wu
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | |
Collapse
|
9
|
Liu S, Zhao N, Rudenja S. Surface Interpenetrating Networks of Poly(ethylene terephthalate) and Polyamides for Effective Biocidal Properties. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.200900381] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Boudou T, Crouzier T, Ren K, Blin G, Picart C. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:441-67. [PMID: 20217734 DOI: 10.1002/adma.200901327] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches."
Collapse
Affiliation(s)
- Thomas Boudou
- Grenoble-INP, LMGP-MINATEC, CNRS UMR 5628 3, Parvis Louis Néel, 38016 Grenoble, France
| | | | | | | | | |
Collapse
|
11
|
Crouzier T, Ren K, Nicolas C, Roy C, Picart C. Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: controlled differentiation of myoblasts to osteoblasts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:598-608. [PMID: 19219837 DOI: 10.1002/smll.200800804] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Efficient delivery of growth or survival factors to cells is one of the most important long-term challenges of current cell-based tissue engineering strategies. The extracellular matrix acts as a reservoir for a number of growth factors through interactions with its components. In the matrix, growth factors are protected against circulating proteases and locally concentrated. Thus, the localized and long-lasting delivery of a matrix-bound recombinant human bone morphogenetic protein 2 (rhBMP-2) from a biomaterial surface would mimic in vivo conditions and increase BMP-2 efficiency by limiting its degradation. Herein, it is shown that crosslinked poly(L-lysine)/hyaluronan (HA) layer-by-layer films can serve as a reservoir for rhBMP-2 delivery to myoblasts and induce their differentiation into osteoblasts in a dose-dependent manner. The amount of rhBMP-2 loaded in the films is controlled by varying the deposition conditions and the film thickness. Its local concentration in the film is increased up to approximately 500-fold when compared to its initial solution concentration. Its adsorption on the films, as well as its diffusion within the films, is evidenced by microfluorimetry and confocal microscopy observations. A direct interaction of rhBMP-2 with HA is demonstrated by size-exclusion chromatography, which could be at the origin of the rhBMP-2 "trapping" in the film and of its low release from the films. The bioactivity of rhBMP-2-loaded films is due neither to film degradation nor to rhBMP-2 release. The rhBMP-2-containing films are extremely resistant and could sustain three successive culture sequences while remaining bioactive, thus confirming the important and protective effect of rhBMP-2 immobilization. These films may find applications in the local delivery of immobilized growth factors for tissue-engineered constructs and for metallic biomaterial surfaces, as they can be deposited on a wide range of substrates with different shapes, sizes, and composition.
Collapse
Affiliation(s)
- Thomas Crouzier
- UMR 5235 Dynamique des Interactions Membranaires Normales et Pathologiques CNRS, Université Montpellier II et I cc 107, Montpellier, France
| | | | | | | | | |
Collapse
|
12
|
Ren K, Crouzier T, Roy C, Picart C. Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. ADVANCED FUNCTIONAL MATERIALS 2008; 18:1378-1389. [PMID: 18841249 PMCID: PMC2561337 DOI: 10.1002/adfm.200701297] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Beside chemical properties and topographical features, mechanical properties of gels have been recently demonstrated to play an important role in various cellular processes, including cell attachment, proliferation, and differentiation. In this work, we used multilayer films made of poly(L-lysine)/Hyaluronan (PLL/HA) of controlled stiffness to investigate the effects of mechanical properties of thin films on skeletal muscle cells (C2C12 cells) differentiation. Prior to differentiation, cells need to adhere and proliferate in growth medium. Stiff films (E(0) > 320 kPa) promoted formation of focal adhesions and organization of the cytoskeleton as well as an enhanced proliferation, whereas soft films were not favorable for cell anchoring, spreading or proliferation. Then C2C12 cells were switched to a low serum containing medium to induce cell differentiation, which was also greatly dependent on film stiffness. Although myogenin and troponin T expressions were only moderately affected by film stiffness, the morphology of the myotubes exhibited striking stiffness-dependent differences. Soft films allowed differentiation only for few days and the myotubes were very short and thick. Cell clumping followed by aggregates detachment could be observed after ~2 to 4 days. On stiffer films, significantly more elongated and thinner myotubes were observed for up to ~ 2 weeks. Myotube striation was also observed but only for the stiffer films. These results demonstrate that film stiffness modulates deeply adhesion, proliferation and differentiation, each of these processes having its own stiffness requirement.
Collapse
Affiliation(s)
- Kefeng Ren
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Thomas Crouzier
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Christian Roy
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Catherine Picart
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| |
Collapse
|