1
|
A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes. Molecules 2022; 27:molecules27103126. [PMID: 35630604 PMCID: PMC9147366 DOI: 10.3390/molecules27103126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific inflammatory response called foreign-body reaction (FBR). The commonly used poly(ethylene glycol) (PEG)-based low-fouling coatings of implantable devices can be easily encapsulated and are susceptible to oxidative damage in long-term in vivo applications. Recently, sulfobetaine-based zwitterionic hydrogels have emerged as an important class of robust ultra-low fouling biomaterials, holding great potential to mitigate FBR. The aim of this proof-of-principle in vitro work was to assess whether the organic zwitterionic—poly(sulfobetaine methacrylate) [poly(SBMA)]—hydrogel could be a suitable coating for Polyimide (PI)-based intraneural electrodes to reduce FBR. We first synthesized and analyzed the hydrogel through a mechanical characterization (i.e., Young’s modulus). Then, we demonstrated reduced adhesion and activation of fibrogenic and pro-inflammatory cells (i.e., human myofibroblasts and macrophages) on the hydrogel compared with PEG-coated and polystyrene surfaces using cell viability assays, confocal fluorescence microscopy and high-content analysis of oxidative stress production. Interestingly, we successfully coated PI surfaces with a thin film of the hydrogel through covalent bond and demonstrated its high hydrophilicity via water contact angle measurement. Importantly, we showed the long-term release of an anti-fibrotic drug (i.e., Everolimus) from the hydrogel. Because of the low stiffness, biocompatibility, high hydration and ultra-low fouling characteristics, our zwitterionic hydrogel could be envisioned as long-term diffusion-based delivery system for slow and controlled anti-inflammatory and anti-fibrotic drug release in vivo.
Collapse
|
2
|
Trel'ová D, Salgarella AR, Ricotti L, Giudetti G, Cutrone A, Šrámková P, Zahoranová A, Chorvát D, Haško D, Canale C, Micera S, Kronek J, Menciassi A, Lacík I. Soft Hydrogel Zwitterionic Coatings Minimize Fibroblast and Macrophage Adhesion on Polyimide Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1085-1099. [PMID: 29792034 DOI: 10.1021/acs.langmuir.8b00765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Minimizing the foreign body reaction to polyimide-based implanted devices plays a pivotal role in several biomedical applications. In this work, we propose materials exhibiting nonbiofouling properties and a Young's modulus reflecting that of soft human tissues. We describe the synthesis, characterization, and in vitro validation of poly(carboxybetaine) hydrogel coatings covalently attached to polyimide substrates via a photolabile 4-azidophenyl group, incorporated in poly(carboxybetaine) chains at two concentrations of 1.6 and 3.1 mol %. The presence of coatings was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy. White light interferometry was used to evaluate the coating continuity and thickness (between 3 and 6 μm under dry conditions). Confocal laser scanning microscopy allowed us to quantify the thickness of the swollen hydrogel coatings that ranged between 13 and 32 μm. The different hydrogel formulations resulted in stiffness values ranging from 2 to 19 kPa and led to different fibroblast and macrophage responses in vitro. Both cell types showed a minimum adhesion on the softest hydrogel type. In addition, both the overall macrophage activation and cytotoxicity were observed to be negligible for all of the tested material formulations. These results are a promising starting point toward future advanced implantable systems. In particular, such technology paves the way for novel neural interfaces able to minimize the fibrotic reaction, once implanted in vivo, and to maximize their long-term stability and functionality.
Collapse
Affiliation(s)
- Dušana Trel'ová
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovakia
| | - Alice Rita Salgarella
- The BioRobotics Institute, Scuola Superiore Sant'Anna , Viale R. Piaggio 34 , 56025 Pontedera ( PI ), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna , Viale R. Piaggio 34 , 56025 Pontedera ( PI ), Italy
| | - Guido Giudetti
- The BioRobotics Institute, Scuola Superiore Sant'Anna , Viale R. Piaggio 34 , 56025 Pontedera ( PI ), Italy
| | - Annarita Cutrone
- The BioRobotics Institute, Scuola Superiore Sant'Anna , Viale R. Piaggio 34 , 56025 Pontedera ( PI ), Italy
- SMANIA srl, via G. Volpe 12 , 56121 Pisa , Italy
| | - Petra Šrámková
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovakia
| | - Anna Zahoranová
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovakia
| | - Dušan Chorvát
- International Laser Centre , Ilkovičova 3 , Bratislava 841 04 , Slovak Republic
| | - Daniel Haško
- International Laser Centre , Ilkovičova 3 , Bratislava 841 04 , Slovak Republic
| | - Claudio Canale
- Department of Physics , University of Genova , Via dodecaneso 33 , 16133 Genova , Italy
- Department of Nanophysics , Istituto Italiano di Tecnologia (IIT) , Via Morego 30 , 16163 Genova , Italy
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna , Viale R. Piaggio 34 , 56025 Pontedera ( PI ), Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering , Ecole Polytechnique Federale de Lausanne , 1015 , Lausanne , Switzerland
| | - Juraj Kronek
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovakia
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna , Viale R. Piaggio 34 , 56025 Pontedera ( PI ), Italy
| | - Igor Lacík
- Department for Biomaterials Research , Polymer Institute of the Slovak Academy of Sciences , Dúbravská cesta 9 , 845 41 Bratislava , Slovakia
| |
Collapse
|
3
|
Vapor-based coatings for antibacterial and osteogenic functionalization and the immunological compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:283-91. [PMID: 27612715 DOI: 10.1016/j.msec.2016.06.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 11/24/2022]
Abstract
The immobilization of biofunctional molecules to biomaterial surfaces has enabled and expanded the versatility of currently available biomaterials to a wider range of applications. In addition, immobilized biomolecules offer modified surfaces that allow the use of smaller amounts of potentially harmful substances or prevent overdose, while the exhibited biological functions remain persistently effective. Surface concentrations of chlorhexidine (CHX) (1.40±0.08×10(-9)mol·cm(-2)) and bone morphogenetic protein 2 (BMP-2) (1.51±0.08×10(-11)mol·cm(-2)) immobilized molecules were determined in this study, and their specific biological functions in terms of antibacterial activity and osteogenesis potency, respectively, were demonstrated to be unambiguously effective. Immobilization exploits the use of vapor-based poly-p-xylylenes, which exhibit excellent biocompatibility and wide applicability for various substrate materials. This technique represents a practical and economical approach for the manufacture of certain industrial products. Furthermore, a minimal degree of macrophage activation was indicated on the modified surfaces via insignificant morphological changes and low levels of adverse inflammatory signals, including suppressed production of the pro-inflammatory cytokines IL-1β and TNF-α as well as nitric oxide (NO). The results and the modification strategy illustrate a concept for designing prospective biomaterial surfaces such that the manipulation employed to elicit targeted biological responses does not compromise immunological compatibility.
Collapse
|
4
|
Zhang Q, Hitchins VM, Schrand AM, Hussain SM, Goering PL. Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators. Nanotoxicology 2010; 5:284-95. [PMID: 20849214 DOI: 10.3109/17435390.2010.512401] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
More information characterizing the biological responses to nanoparticles is needed to allow the U.S. Food and Drug Administration to evaluate the safety and effectiveness of products with nano-scale components. The potential cytotoxicity and inflammatory responses of Au NPs (60 nm, NIST standard reference materials) were investigated in murine macrophages. Cytotoxicity was evaluated by MTT and LDH assays. Cytokines (IL-6, TNF-α), nitric oxide, and ROS were assayed to assess inflammatory responses. Morphological appearance and localization of particles were examined by high resolution illumination microscopy, transmission electron microscopy (TEM), and scanning TEM coupled with EDX spectroscopy. Results showed no cytotoxicity and no elevated production of proinflammatory mediators; however, imaging analyses demonstrated cellular uptake of Au NPs and localization within intracellular vacuoles. These results suggest that 60 nm Au NPs, under the exposure conditions tested, are not cytotoxic, nor elicit pro-inflammatory responses. The localization of Au NPs in intracellular vacuoles suggests endosomal containment and an uptake mechanism involving endocytosis.
Collapse
Affiliation(s)
- Qin Zhang
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring , MD 20993, USA
| | | | | | | | | |
Collapse
|