1
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
2
|
Mechanical Properties, Corrosion Resistance and Bioactivity of Oxide Layers Formed by Isothermal Oxidation of Ti-6Al-7Nb Alloy. COATINGS 2021. [DOI: 10.3390/coatings11050505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Titanium and its alloys are among the most promising biomaterials for medical applications. In this work, the isothermal oxidation of Ti-6Al-7Nb biomedical alloy towards improving its mechanical properties, corrosion resistance, and bioactivity has been developed. The oxide layers were formed at 600, 700, and 800 °C for 72 h. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), 3D profilometry, and microindentation test, were used to characterize microstructure, surface geometrical structure, and the hardness of the diphase (α + β) Ti-6Al-7Nb alloy after oxidation, respectively. In vitro corrosion resistance tests were carried out in a saline solution at 37 °C using the open-circuit potential method and potentiodynamic measurements. Electronic properties in the air were studied using the Scanning Kelvin Probe (SKP) technique. The bioactivity test was conducted by soaking the alkali- and heat-treated samples in simulated body fluid for 7 days. The presence of apatite was confirmed using SEM/EDS and Fourier Transform Infrared Spectroscopy (FTIR) studies. The thickness of oxide layers formed increased with the temperature growth from 0.25 to 5.48 µm. It was found that with increasing isothermal oxidation temperature, the surface roughness, hardness, corrosion resistance, and contact potential difference increased. The Ti-6Al-7Nb alloy after oxidation revealed the HAp-forming ability in a biological environment.
Collapse
|
3
|
Ro HS, Park HJ, Seo YK. Fluorine-incorporated TiO 2 nanotopography enhances adhesion and differentiation through ERK/CREB pathway. J Biomed Mater Res A 2020; 109:1406-1417. [PMID: 33253478 PMCID: PMC8247403 DOI: 10.1002/jbm.a.37132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
This study compared the topography of different titanium surface structures (TiO2 nanotube and grain) with similar elemental compositions (TiO2 and fluorine [F]) on the Ti surface. High magnification indicated that the surfaces of the control and etching groups were similar to each other in a flat, smooth form. The group anodized for 1 h was observed with TiO2 nanotubes organized very neatly and regularly. In the group anodized for 30 min after etching, uneven wave and nanopore structures were observed. In addition, MTT assay showed that the F of the surface did not adversely affect cell viability, and the initial cell adhesion was increased in the 2.8% F‐incorporated TiO2 nanograin. At the edge of adherent cells, filopodia were observed in spreading form on the surfaces of the anodizing and two‐step processing groups, and they were observed in a branch shape in the control and etching groups. Moreover, cell adhesion molecule and osteogenesis marker expression was increased at the F‐incorporated TiO2 nanostructure. In addition, it was found that the expression of p‐extracellular signal‐regulated kinase (ERK) and p‐cAMP response element‐binding protein (CREB) increased in the TiO2 nanograin with the nanopore surface compared to the micro rough and nanotube surfaces relative to the osteogenic‐related gene expression patterns. As a result, this study confirmed that the topographic structure of the surface is more affected by osteogenic differentiation than the pore size and that differentiation by specific surface composition components is by CREB. Thus, the synergy effect of osteogenic differentiation was confirmed by the simultaneous activation of CREB/ERK.
Collapse
Affiliation(s)
- Hyang-Seon Ro
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, South Korea
| | - Hee-Jung Park
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Gyeonggi-do, South Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Gyeonggi-do, South Korea
| |
Collapse
|
4
|
In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti-20Nb-13Zr Alloys for Orthopedic Applications. COATINGS 2019. [DOI: 10.3390/coatings9050344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The influence of surface treatments on the microstructure, in vitro bioactivity and corrosion protection performance of newly fabricated Ti-20Nb-13Zr (TNZ) alloys was evaluated in simulated body fluid (SBF). The TNZ alloy specimens were treated with separate aqueous solutions of NaOH and H2O2 and with a mixture of both, followed by thermal treatment. The nanoporous network surface structure observed in H2O2-treated and alkali-treated specimens was entirely different from the rod-like morphology observed in alkali hydrogen peroxide-treated specimens. XRD results revealed the formation of TiO2 and sodium titanate layers on the TNZ specimens during surface treatments. The water contact angle results implied that the surface-treated specimens exhibited improved surface hydrophilicity, which probably improved the bioactivity of the TNZ specimens. The in vitro corrosion protection performance of the surface-treated TNZ specimens was analyzed using electrochemical corrosion testing in SBF, and the obtained results indicated that the surface-treated specimens exhibited improved corrosion resistance performance compared to that of the bare TNZ specimen. The in vitro bioactivity of the treated TNZ specimens was assessed by soaking in SBF, and all the investigated treated specimens showed numerous apatite nucleation spheres within 3 days of immersion in SBF.
Collapse
|
5
|
|
6
|
Li K, Wang C, Yan J, Zhang Q, Dang B, Wang Z, Yao Y, Lin K, Guo Z, Bi L, Han Y. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 2018; 8:1843. [PMID: 29382859 PMCID: PMC5790016 DOI: 10.1038/s41598-018-19742-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate whether a surface coating with graphene could enhance the surface bioactivation of titanium alloys (Ti6Al4V) to further accelerate in vivo osteogenesis and osseointegration at the implant surface. In this study, a New Zealand white rabbit femoral condyle defect model was established. After 4, 12 and 24 weeks, biomechanical testing, micro-computed tomography (Micro-CT) analyses and histological observations were performed. At the highest push-out forces during the test, microstructure parameters, such as the bone volume/total volume fraction (BV/TV) and mineral apposition rate (MAR), of the new bone were significantly higher in the graphene-coated Ti6Al4V group (G-Ti6Al4V) than in the Ti6Al4V group (P < 0.05). Van Gieson (VG) staining showed that the G-Ti6Al4V group had more new bone formation than the Ti6Al4V group, and the G-Ti6Al4V group showed a closer fit between the bone and implant. In conclusion, graphene might be a novel type of nano-coating material for enhancing the surface biological activity of Ti-based alloy materials and may further promote in vivo osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Kewen Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
- Department of Orthopedics, Qinghai University Affiliated Hospital, Xining, 810001, P.R. China.
| | - Chunhui Wang
- Military Frontier Defence Medical Service Tranning Group, Army Medical University, Hutubi, Xinjiang, 831200, P.R. China
| | - Jinhong Yan
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Qi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Baoping Dang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhuo Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yun Yao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Kaifeng Lin
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhongshang Guo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yisheng Han
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
| |
Collapse
|
7
|
Effect of Acid Treatment on the Surface Modification of Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta and Its Electrochemical Investigations in Simulated Body Fluid. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40735-017-0096-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Filova E, Fojt J, Kryslova M, Moravec H, Joska L, Bacakova L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Int J Nanomedicine 2015; 10:7145-63. [PMID: 26648719 PMCID: PMC4664495 DOI: 10.2147/ijn.s87474] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ti-6Al-4V-based nanotubes were prepared on a Ti-6Al-4V surface by anodic oxidation on 10 V, 20 V, and 30 V samples. The 10 V, 20 V, and 30 V samples and a control smooth Ti-6Al-4V sample were evaluated in terms of their chemical composition, diameter distribution, and cellular response. The surfaces of the 10 V, 20 V, and 30 V samples consisted of nanotubes of a relatively wide range of diameters that increased with the voltage. Saos-2 cells had a similar initial adhesion on all nanotube samples to the control Ti-6Al-4V sample, but it was lower than on glass. On day 3, the highest concentrations of both vinculin and talin measured by enzyme-linked immunosorbent assay and intensity of immunofluorescence staining were on 30 V nanotubes. On the other hand, the highest concentrations of ALP, type I collagen, and osteopontin were found on 10 V and 20 V samples. The final cellular densities on 10 V, 20 V, and 30 V samples were higher than on glass. Therefore, the controlled anodization of Ti-6Al-4V seems to be a useful tool for preparing nanostructured materials with desirable biological properties.
Collapse
Affiliation(s)
- Elena Filova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Fojt
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Marketa Kryslova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Moravec
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Ludek Joska
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Liu XH, Wu L, Ai HJ, Han Y, Hu Y. Cytocompatibility and early osseointegration of nanoTiO2-modified Ti-24 Nb-4 Zr-7.9 Sn surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 48:256-62. [PMID: 25579921 DOI: 10.1016/j.msec.2014.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/29/2014] [Accepted: 12/04/2014] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the cytocompatibility and early osseointegration of Ti-24 Nb-4 Zr-7.9 Sn (Ti-2448) surfaces that were modified with a nanoscale TiO2 coating. The coating was fabricated using a hydrothermal synthesis method to generate nanoTiO2/Ti-2448. The surface characteristics of the samples were evaluated using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). The cytotoxicity of the fabricated nanoTiO2/Ti-2448 was determined using MTT assays. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts cultured on nanoTiO2/Ti-2448 were compared with those cultured on Ti-2448. Disk-shaped implants were placed in Wistar rats. The histological sections were stained with haematoxylin and eosin (HE), and the histocompatibility was analysed at 4 and 12weeks post-implantation. Cylindrical implants were embedded in Japanese white rabbits, and the histological sections were stained with HE and anti-TGF-β1 to evaluate the histocompatibility and early osseointegration at 4, 12 and 26weeks post-implantation. NanoTiO2/Ti-2448 exhibited a rougher surface than did Ti-2448. NanoTiO2/Ti-2448 was determined to be non-cytotoxic. More osteoblasts and higher ALP activity were observed for nanoTiO2/Ti-2448 than Ti-2448 (p<0.05). Few inflammatory cells were detected around nanoTiO2/Ti-2448, and the expression of TGF-β1 on nanoTiO2/Ti-2448 peaked at earlier time than that on Ti-2448. The results indicate that the cytocompatibility and early osseointegration were enhanced by the nanoTiO2 coating.
Collapse
Affiliation(s)
- X H Liu
- Department of Prosthodontics, China Medical University School of Stomatology, Shenyang, People's Republic of China
| | - L Wu
- Department of Prosthodontics, China Medical University School of Stomatology, Shenyang, People's Republic of China.
| | - H J Ai
- Department of Prosthodontics, China Medical University School of Stomatology, Shenyang, People's Republic of China
| | - Y Han
- State Key laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Y Hu
- Department of Prosthodontics, China Medical University School of Stomatology, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Krząkała A, Służalska K, Widziołek M, Szade J, Winiarski A, Dercz G, Kazek A, Tylko G, Michalska J, Iwaniak A, Osyczka AM, Simka W. Formation of bioactive coatings on a Ti–6Al–7Nb alloy by plasma electrolytic oxidation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.07.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Koo TH, Borah JS, Xing ZC, Moon SM, Jeong Y, Kang IK. Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells. NANOSCALE RESEARCH LETTERS 2013; 8:124. [PMID: 23497321 PMCID: PMC3602675 DOI: 10.1186/1556-276x-8-124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/27/2013] [Indexed: 05/28/2023]
Abstract
Self-assembled layers of vertically aligned titanium nanotubes were fabricated on a Ti disc by anodization. Pamidronic acids (PDAs) were then immobilized on the nanotube surface to improve osseointegration. Wide-angle X-ray diffraction, X-ray photoelectron microscopy, and scanning electron microscopy were employed to characterize the structure and morphology of the PDA-immobilized TiO2 nanotubes. The in vitro behavior of osteoblast and osteoclast cells cultured on an unmodified and surface-modified Ti disc was examined in terms of cell adhesion, proliferation, and differentiation. Osteoblast adhesion, proliferation, and differentiation were improved substantially by the topography of the TiO2 nanotubes, producing an interlocked cell structure. PDA immobilized on the TiO2 nanotube surface suppressed the viability of the osteoclasts and reduced their bone resorption activity.
Collapse
Affiliation(s)
- Tae-Hyung Koo
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701, South Korea
| | - Jyoti S Borah
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701, South Korea
| | - Zhi-Cai Xing
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701, South Korea
| | - Sung-Mo Moon
- Department of Surface Technology, Korea Institute of Material Science, Changwon-si, 642-831, South Korea
| | - Yongsoo Jeong
- Department of Surface Technology, Korea Institute of Material Science, Changwon-si, 642-831, South Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701, South Korea
| |
Collapse
|
12
|
Lee BA, Kang CH, Vang MS, Jung YS, Piao XH, Kim OS, Chung HJ, Kim YJ. Surface characteristics and osteoblastic cell response of alkali-and heat-treated titanium-8tantalum-3niobium alloy. J Periodontal Implant Sci 2012; 42:248-55. [PMID: 23346470 PMCID: PMC3543942 DOI: 10.5051/jpis.2012.42.6.248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/02/2022] Open
Abstract
Purpose The aim of the present study was to evaluate the biological response of alkali- and heat-treated titanium-8tantalum-3niobium surfaces by cell proliferation and alkaline phosphatase (ALP) activity analysis. Methods Commercial pure titanium (group cp-Ti) and alkali- and heat-treated titanium-8tantalum-3niobium (group AHT) disks were prepared. The surface properties were evaluated using scanning electron microscopy, energy dispersed spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were also analyzed. The biological response of fetal rat calvarial cells on group AHT was assessed by cell proliferation and ALP activity. Results Group AHT showed a flake-like morphology microprofile and dense structure. XPS analysis of group AHT showed an increased amount of oxygen in the basic hydroxyl residue of titanium hydroxide groups compared with group cp-Ti. The surface roughness (Ra) measured by a profilometer showed no significant difference (P>0.05). Group AHT showed a lower contact angle and higher surface energy than group cp-Ti. Cell proliferation on group AHT surfaces was significantly higher than on group cp-Ti surfaces (P<0.05). In comparison to group cp-Ti, group AHT enhanced ALP activity (P<0.05). Conclusions These results suggest that group AHT stimulates osteoblast differentiation.
Collapse
Affiliation(s)
- Bo-Ah Lee
- Department of Periodontology, Dental Research Institute, Chonnam National University School of Dentistry, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 2011; 32:6900-11. [PMID: 21733571 DOI: 10.1016/j.biomaterials.2011.06.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/09/2011] [Indexed: 01/07/2023]
Abstract
Titanium dioxide (TiO(2)) nanotubes can accelerate the adhesion and differentiation of osteoblasts, yet little is known how this nano-modified implant surface affects osseointegration at molecular level in vivo. The aim of this study was to investigate the effects of TiO(2) nanotubes with different diameters (30 nm, 70 nm and 100 nm) on biological attachment mechanism of implants to bone in vivo by studying the gene expression and bone formation around the implants. The histological features and fluorochrome labeling changes of bone around implants on the non-decalcified sections (at 3, 5 and 8 weeks after implantation) were investigated by using traditional light- and fluorescent microscopy, and the gene expression of alkaline phosphatase (ALP), osterix (Osx), collagen-I (Col-I) and tartrate-resistant acid phosphatase (TRAP) was examined by using real-time PCR at 1, 2, 3, 4 and 5 weeks after implantation. Comparing with machined titanium implants, a significant increase in bone-implant contact (BIC) and gene expression levels was found in the bone attached to implants with TiO(2) nanotubes, especially with 70 nm diameter nanotubes. At the same time, the sequential fluorescent labeling images illustrated dynamic bone deposition. In conclusion, TiO(2) nanotubes can modulate bone formation events at the bone-implant interface as to reach favorable molecular response and osseointegration; in addition, the diameters of nanotubes can be precisely controlled in order to obtain better bone formation.
Collapse
|
14
|
Karthega M, Nagarajan S, Rajendran N. In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.11.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|