1
|
Halvorsen TG, Reubsaet L. The utility of molecularly imprinted polymers for mass spectrometric protein and proteomics analysis. Proteomics 2022; 22:e2100395. [PMID: 36217925 DOI: 10.1002/pmic.202100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
Selective and efficient sample clean-up is important in mass spectrometric protein- and proteomics analyses from biological matrices. Molecularly imprinted polymers (MIPs), polymers prepared to have tailor-made cavities for capture of target analytes may by such represent an interesting alternative for selective clean-up. The present review aims to give an overview of the utility of MIPs for protein capture from biological matrices prior to mass spectrometry (MS) analysis. The application of MIPs in depletion of abundant proteins, in protein and proteotypic peptide capture as well as in capture of post-translational modifications (PTMs) is described and discussed. In addition, an overview of available MIP formats and their advantages and challenges is given, together with an overview of the mass spectrometric techniques used in protein analysis after MIP capture. Overall, the present literature demonstrates that for many applications MIPs for sample clean-up in mass spectrometric protein and proteomics analysis from biological matrices is still not fully matured. MIPs for proteotypic peptide capture is the most mature approach and a method for routine use may be available within the next few years.
Collapse
Affiliation(s)
| | - Léon Reubsaet
- Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Çimen D, Üzek R, Günaydın S, Denizli A. Real‐Time Detection of Fibrinogen via Imprinted Recognition Sites. ChemistrySelect 2021. [DOI: 10.1002/slct.202101942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Duygu Çimen
- Hacettepe University Department of Chemistry, Beytepe Ankara Turkey
| | - Recep Üzek
- Hacettepe University Department of Chemistry, Beytepe Ankara Turkey
| | - Serdar Günaydın
- Department of Cardiovascular Surgery University of Health Sciences Ankara City Hospital Ankara Turkey
| | - Adil Denizli
- Hacettepe University Department of Chemistry, Beytepe Ankara Turkey
| |
Collapse
|
3
|
Komiyama M, Mori T, Ariga K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180084] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Makoto Komiyama
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
4
|
Ertürk G, Lood R. Ultrasensitive Detection of Biomarkers by Using a Molecular Imprinting Based Capacitive Biosensor. J Vis Exp 2018. [PMID: 29553527 PMCID: PMC5931318 DOI: 10.3791/57208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to detect and quantitate biomolecules in complex solutions has always been highly sought-after within natural science; being used for the detection of biomarkers, contaminants, and other molecules of interest. A commonly used technique for this purpose is the Enzyme-linked Immunosorbent Assay (ELISA), where often one antibody is directed towards a specific target molecule, and a second labeled antibody is used for the detection of the primary antibody, allowing for the absolute quantification of the biomolecule under study. However, the usage of antibodies as recognition elements limits the robustness of the method; as does the need of using labeled molecules. To overcome these limitations, molecular imprinting has been implemented, creating artificial recognition sites complementary to the template molecule, and obsoleting the necessity of using antibodies for initial binding. Further, for even higher sensitivity, the secondary labeled antibody can be replaced by biosensors relying on the capacitance for the quantification of the target molecule. In this protocol, we describe a method to rapidly and label-free detect and quantitate low-abundant biomolecules (proteins and viruses) in complex samples, with a sensitivity that is significantly better than commonly used detection systems such as the ELISA. This is all mediated by molecular imprinting in combination with a capacitance biosensor.
Collapse
Affiliation(s)
- Gizem Ertürk
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University;
| |
Collapse
|
5
|
Ertürk G, Hedström M, Tümer MA, Denizli A, Mattiasson B. Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal Chim Acta 2015; 891:120-9. [DOI: 10.1016/j.aca.2015.07.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 07/19/2015] [Accepted: 07/24/2015] [Indexed: 12/18/2022]
|
6
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
7
|
Ertürk G, Berillo D, Hedström M, Mattiasson B. Microcontact-BSA imprinted capacitive biosensor for real-time, sensitive and selective detection of BSA. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:65-72. [PMID: 28626651 PMCID: PMC5466099 DOI: 10.1016/j.btre.2014.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/28/2022]
Abstract
An analytical method is presented, combining novel microcontact imprinting technique and capacitive biosensor technology for the detection of BSA. Glass cover slips were used for preparation of protein stamps. The microcontact-BSA imprinted gold electrodes were prepared in the presence of methacrylic acid (MAA) and poly-ethylene glycol dimethacrylate (PEGDMA) as the cross-linker by bringing the protein stamp and the gold electrode into contact under UV-polymerization. Real-time BSA detection studies were performed in the concentration range of 1.0 × 10-20-1.0 × 10-8 M with a limit of detection (LOD) of 1.0 × 10-19 M. Cross-reactivity towards HSA and IgG were 5 and 3%, respectively. The electrodes were used for >70 assays during 2 months and retained their binding properties during all that time. The NIP (non-imprinted) electrode was used as a reference. The microcontact imprinting technology combined with the biosensor applications is a promising technology for future applications.
Collapse
|
8
|
|
9
|
Moreira FT, Sharma S, Dutra RA, Noronha JP, Cass AE, Sales MGF. Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: Application to myoglobin detection. Biosens Bioelectron 2013; 45:237-44. [DOI: 10.1016/j.bios.2013.02.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
|
10
|
Hussain M, Wackerlig J, Lieberzeit PA. Biomimetic strategies for sensing biological species. BIOSENSORS 2013; 3:89-107. [PMID: 25587400 PMCID: PMC4263596 DOI: 10.3390/bios3010089] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 02/07/2023]
Abstract
The starting point of modern biosensing was the application of actual biological species for recognition. Increasing understanding of the principles underlying such recognition (and biofunctionality in general), however, has triggered a dynamic field in chemistry and materials sciences that aims at joining the best of two worlds by combining concepts derived from nature with the processability of manmade materials, e.g., sensitivity and ruggedness. This review covers different biomimetic strategies leading to highly selective (bio)chemical sensors: the first section covers molecularly imprinted polymers (MIP) that attempt to generate a fully artificial, macromolecular mold of a species in order to detect it selectively. A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them. Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors. Finally, this review will highlight some approaches to generate artificial analogs of natural recognition materials and biomimetic approaches in nanotechnology. It mainly focuses on the literature published since 2005.
Collapse
Affiliation(s)
- Munawar Hussain
- Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria; E-Mails: (M.H.); (J.W.)
| | - Judith Wackerlig
- Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria; E-Mails: (M.H.); (J.W.)
| | - Peter A Lieberzeit
- Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria; E-Mails: (M.H.); (J.W.)
| |
Collapse
|
11
|
Kryscio DR, Peppas NA. Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin. Anal Chim Acta 2012; 718:109-15. [DOI: 10.1016/j.aca.2012.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/03/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
12
|
Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 2012; 8:461-73. [PMID: 22100344 DOI: 10.1016/j.actbio.2011.11.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/25/2011] [Accepted: 11/03/2011] [Indexed: 01/11/2023]
Abstract
Molecular recognition is a fundamental and ubiquitous process that is the driving force behind life. Natural recognition elements - including antibodies, enzymes, nucleic acids, and cells - exploit non-covalent interactions to bind to their targets with exceptionally strong affinities. Due to this unparalleled proficiency, scientists have long sought to mimic natural recognition pathways. One promising approach is molecularly imprinted polymers (MIPs), which are fully synthetic systems formed via the crosslinking of organic polymers in the presence of a template molecule, which results in stereo-specific binding sites for this analyte of interest. Macromolecularly imprinted polymers, those synthesized in the presence of macromolecule templates (>1500 Da), are of particular importance because they open up the field for a whole new set of robust diagnostic tools. Although the specific recognition of small-molecular-weight analytes is now considered routine, extension of these efficacious procedures to the protein regime has, thus far, proved challenging. This paper reviews the main approaches employed, highlights studies of interest with an emphasis on recent work, and offers suggestions for future success in the field of macromolecularly imprinted polymers.
Collapse
|
13
|
Surface Imprinting Approach on Screen Printed Electrodes Coated with Carboxylated PVC for Myoglobin detection with Electrochemical Transduction. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.09.284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 2011; 40:1547-71. [DOI: 10.1039/c0cs00049c] [Citation(s) in RCA: 569] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|