1
|
Arlandis S, Fry C, Wyndaele M, Apostolidis A, Finazzi-Agró E, Tyagi P, Winder M, Hashitani H, Mosiello G, Averbeck MA, Wein A, Abrams P. Think Tank 2: How Do We Precisely Define the "High Risk Bladder" and What Are the Interrelationships Between Inflammation, Blood Flow, Fibrosis, and Loss of Bladder Compliance? Neurourol Urodyn 2024. [PMID: 39473282 DOI: 10.1002/nau.25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Defining "high-risk bladder" or "high-pressure bladder" involves recognizing the potential for an unsafe lower urinary tract, where dysfunction in storage and micturition can threaten upper urinary tract health, leading to unfavorable outcomes like dialysis, recurrent infections, systemic impact, or mortality. METHODS ICI-RS was held in Bristol in June 2024, and Think Tank 2 aimed to define research priorities including identifying clinical predictors and developing prevention and monitoring strategies. RESULTS Risk factors encompass both congenital and neurogenic lower urinary tract dysfunction, bladder outlet obstruction, vascular diseases, and inflammatory disorders, but a validated stratification risk is lacking. Reduced compliance and detrusor overactivity lead to high filling pressures and raised detrusor leak point pressure, playing urodynamic studies a crucial role in risk assessment, though further research is needed for different neurogenic populations. Congenital conditions such as spina bifida, posterior urethral valves, and bladder exstrophy also contribute to a high-risk bladder through fibrosis and reduced compliance. Inflammation and ischemia are key factors, with inflammation leading to fibrosis and impaired bladder storage and voiding function. Novel treatments, including sGC activators, PDE5 inhibitors, and regenerative therapies like stem cell injections and extracorporeal shock wave treatment, show promise in mitigating fibrosis and improving bladder compliance. CONCLUSIONS Identifying and validating clinical risk stratification models, precise biomarkers and therapeutic windows remains essential for effective management and reversal of bladder fibrosis and dysfunction.
Collapse
Affiliation(s)
- Salvador Arlandis
- Urology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Christopher Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Michel Wyndaele
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Winder
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Giovanni Mosiello
- Department of Nephrology and Urology, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Marcio Augusto Averbeck
- Urology Department, Moinhos de Vento Hospital, São Lucas Hospital, PUCRS, Porto Alegre, Brazil
| | - Alan Wein
- Desai-Seth Institute of Urology, University of Miami, Miami, Florida, USA
| | - Paul Abrams
- Department of Urology, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Maistriaux L, Foulon V, Fievé L, Xhema D, Evrard R, Manon J, Coyette M, Bouzin C, Poumay Y, Gianello P, Behets C, Lengelé B. Reconstruction of the human nipple-areolar complex: a tissue engineering approach. Front Bioeng Biotechnol 2024; 11:1295075. [PMID: 38425730 PMCID: PMC10902434 DOI: 10.3389/fbioe.2023.1295075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Introduction: Nipple-areolar complex (NAC) reconstruction after breast cancer surgery is challenging and does not always provide optimal long-term esthetic results. Therefore, generating a NAC using tissue engineering techniques, such as a decellularization-recellularization process, is an alternative option to recreate a specific 3D NAC morphological unit, which is then covered with an in vitro regenerated epidermis and, thereafter, skin-grafted on the reconstructed breast. Materials and methods: Human NACs were harvested from cadaveric donors and decellularized using sequential detergent baths. Cellular clearance and extracellular matrix (ECM) preservation were analyzed by histology, as well as by DNA, ECM proteins, growth factors, and residual sodium dodecyl sulfate (SDS) quantification. In vivo biocompatibility was evaluated 30 days after the subcutaneous implantation of native and decellularized human NACs in rats. In vitro scaffold cytocompatibility was assessed by static seeding of human fibroblasts on their hypodermal side for 7 days, while human keratinocytes were seeded on the scaffold epidermal side for 10 days by using the reconstructed human epidermis (RHE) technique to investigate the regeneration of a new epidermis. Results: The decellularized NAC showed a preserved 3D morphology and appeared white. After decellularization, a DNA reduction of 98.3% and the absence of nuclear and HLA staining in histological sections confirmed complete cellular clearance. The ECM architecture and main ECM proteins were preserved, associated with the detection and decrease in growth factors, while a very low amount of residual SDS was detected after decellularization. The decellularized scaffolds were in vivo biocompatible, fully revascularized, and did not induce the production of rat anti-human antibodies after 30 days of subcutaneous implantation. Scaffold in vitro cytocompatibility was confirmed by the increasing proliferation of seeded human fibroblasts during 7 days of culture, associated with a high number of living cells and a similar viability compared to the control cells after 7 days of static culture. Moreover, the RHE technique allowed us to recreate a keratinized pluristratified epithelium after 10 days of culture. Conclusion: Tissue engineering allowed us to create an acellular and biocompatible NAC with a preserved morphology, microarchitecture, and matrix proteins while maintaining their cell growth potential and ability to regenerate the skin epidermis. Thus, tissue engineering could provide a novel alternative to personalized and natural NAC reconstruction.
Collapse
Affiliation(s)
- Louis Maistriaux
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Vincent Foulon
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Lies Fievé
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Maude Coyette
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Yves Poumay
- Research Unit for Molecular Physiology (URPhyM), Department of Medicine, Namur Research Institute for Life Sciences (NARILIS), UNamur, Namur, Belgium
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
3
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
4
|
Wang X, Shi C, Hou X, Song S, Li C, Cao W, Chen W, Li L. Application of biomaterials and tissue engineering in bladder regeneration. J Biomater Appl 2022; 36:1484-1502. [DOI: 10.1177/08853282211048574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary functions of the bladder are storing urine under low and stable pressure and micturition. Various forms of trauma, tumors, and iatrogenic injuries can cause the loss of or reduce bladder function or capacity. If such damage is not treated in time, it will eventually lead to kidney damage and can even be life-threatening in severe cases. The emergence of tissue engineering technology has led to the development of more possibilities for bladder repair and reconstruction, in which the selection of scaffolds is crucial. In recent years, a growing number of tissue-engineered bladder scaffolds have been constructed. Therefore, this paper will discuss the development of tissue-engineered bladder scaffolds and will further analyze the limitations of and challenges encountered in bladder reconstruction.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianglin Hou
- Institute of genetics and developmental biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Bury MI, Fuller NJ, Sturm RM, Rabizadeh RR, Nolan BG, Barac M, Edassery SS, Chan YY, Sharma AK. The effects of bone marrow stem and progenitor cell seeding on urinary bladder tissue regeneration. Sci Rep 2021; 11:2322. [PMID: 33504876 PMCID: PMC7840904 DOI: 10.1038/s41598-021-81939-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Complications associated with urinary bladder augmentation provide the motivation to delineate alternative bladder tissue regenerative engineering strategies. We describe the results of varying the proportion of bone marrow (BM) mesenchymal stem cells (MSCs) to CD34 + hematopoietic stem/progenitor cells (HSPCs) co-seeded onto synthetic POC [poly(1,8 octamethylene citrate)] or small intestinal submucosa (SIS) scaffolds and their contribution to bladder tissue regeneration. Human BM MSCs and CD34 + HSPCs were co-seeded onto POC or SIS scaffolds at cell ratios of 50 K CD34 + HSPCs/15 K MSCs (CD34-50/MSC15); 50 K CD34 + HSPCs/30 K MSCs (CD34-50/MSC30); 100 K CD34 + HSPCs/15 K MSCs (CD34-100/MSC15); and 100 K CD34 + HSPCs/30 K MSCs (CD34-100/MSC30), in male (M/POC; M/SIS; n = 6/cell seeded scaffold) and female (F/POC; F/SIS; n = 6/cell seeded scaffold) nude rats (n = 96 total animals). Explanted scaffold/composite augmented bladder tissue underwent quantitative morphometrics following histological staining taking into account the presence (S+) or absence (S−) of bladder stones. Urodynamic studies were also performed. Regarding regenerated tissue vascularization, an upward shift was detected for some higher seeded density groups including the CD34-100/MSC30 groups [F/POC S− CD34-100/MSC30 230.5 ± 12.4; F/POC S+ CD34-100/MSC30 245.6 ± 23.4; F/SIS S+ CD34-100/MSC30 278.1; F/SIS S− CD34-100/MSC30 187.4 ± 8.1; (vessels/mm2)]. Similarly, a potential trend toward increased levels of percent muscle (≥ 45% muscle) with higher seeding densities was observed for F/POC S− [CD34-50/MSC30 48.8 ± 2.2; CD34-100/MSC15 53.9 ± 2.8; CD34-100/MSC30 50.7 ± 1.7] and for F/SIS S− [CD34-100/MSC15 47.1 ± 1.6; CD34-100/MSC30 51.2 ± 2.3]. As a potential trend, higher MSC/CD34 + HSPCs cell seeding densities generally tended to increase levels of tissue vascularization and aided with bladder muscle growth. Data suggest that increasing cell seeding density has the potential to enhance bladder tissue regeneration in our model.
Collapse
Affiliation(s)
- Matthew I Bury
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Natalie J Fuller
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Renea M Sturm
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Bonnie G Nolan
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Milica Barac
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Sonia S Edassery
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Yvonne Y Chan
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA. .,Northwestern University, Simpson Querrey Biomedical Research Institute, 303 East Superior St., Chicago, IL, 60611, USA. .,Stanley Manne Children's Research Institute, 303 East Superior St., Chicago, IL, 60611, USA. .,Department of Urology, Northwestern University Feinberg School of Medicine, 676 North St. Clair, Chicago, IL, 60611, USA. .,Center for Advanced Regenerative Engineering, Northwestern University, 633 Clark St., Evanston, IL, 60208, USA.
| |
Collapse
|
6
|
Uday Chandrika K, Tripathi R, Kameshwari Y, Rangaraj N, Mahesh Kumar J, Singh S. Refunctionalization of Decellularized Organ Scaffold of Pancreas by Recellularization: Whole Organ Regeneration into Functional Pancreas. Tissue Eng Regen Med 2020; 18:99-112. [PMID: 33098547 DOI: 10.1007/s13770-020-00296-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tissue engineering centers on creating a niche similar to the natural one, with a purpose of developing an organ construct. A natural scaffold can replace none while creating a scaffold unique to each tissue in composition, architecture and cues that regulate the character of cells. METHODS Whole pancreas from mouse was decellularized using detergent and enzymes, followed by recellularizing with MSC from human placenta. This construct was transplanted in streptozotocin induced diabetic mice. Histopathology of both decellularized and recellularized transplanted pancreas and qPCR analysis were performed to assess its recovery. RESULTS Decellularization removes the cells leaving behind extracellular matrix rich natural scaffold. After reseeding with mesenchymal stem cells, these cells differentiate into pancreas specific cells. Upon transplantation in streptozotocin induced diabetic mice, this organ was capable of restoring its histomorphology and functioning. Restoration of endocrine (islets), the exocrine region (acinar) and vascular network was seen in transplanted pancreas. The process of functional recovery of endocrine system took about 20 days when the mice start showing blood glucose reduction, though none achieved gluconormalization. CONCLUSION Natural decellularized scaffolds of soft organs can be refunctionalized using recipient's mesenchymal stem cells to restore structure and function; and counter immune problems arising during transplantation.
Collapse
Affiliation(s)
- K Uday Chandrika
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rekha Tripathi
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Y Kameshwari
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Nandini Rangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - J Mahesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shashi Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
7
|
Chua ME, Farhat WA, Ming JM, McCammon KA. Review of clinical experience on biomaterials and tissue engineering of urinary bladder. World J Urol 2019; 38:2081-2093. [PMID: 31222507 DOI: 10.1007/s00345-019-02833-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In recent pre-clinical studies, biomaterials and bladder tissue engineering have shown promising outcomes when addressing the need for bladder tissue replacement. To date, multiple clinical experiences have been reported. Herein, we aim to review and summarize the reported clinical experience of biomaterial usage and tissue engineering of the urinary bladder. METHODS A systematic literature search was performed on Feb 2019 to identify clinical reports on biomaterials for urinary bladder replacement or augmentation and clinical experiences with bladder tissue engineering. We identified and reviewed human studies using biomaterials and tissue-engineered bladder as bladder substitutes or augmentation implants. The studies were then summarized for each respective procedure indication, technique, follow-up period, outcome, and important findings of the studies. RESULTS An extensive literature search identified 25 studies of case reports and case series with a cumulative clinical experience of 222 patients. Various biomaterials and tissue-engineered bladder were used, including plastic/polyethylene mold, preserved dog bladder, gelatine sponge, Japanese paper with Nobecutane, lypholized human dura, bovine pericardium, amniotic membrane, small intestinal mucosa, and bladder tissue engineering with autologous cell-seeded biodegradable scaffolds. However, overall clinical experiences including the outcomes and safety reports were not satisfactory enough to replace enterocystoplasty. CONCLUSION To date, several clinical experiences of biomaterials and tissue-engineered bladder have been reported; however, various studies have reported non-satisfactory outcomes. Further technological advancements and a better understanding is needed to advance bladder tissue engineering as a future promising management option for patients requiring bladder drainage.
Collapse
Affiliation(s)
- Michael E Chua
- Eastern Virginia Medical School, Norfolk, VA, USA.,St. Luke's Medical Center, Quezon City, NCR, Philippines
| | | | | | | |
Collapse
|
8
|
Horst M, Eberli D, Gobet R, Salemi S. Tissue Engineering in Pediatric Bladder Reconstruction-The Road to Success. Front Pediatr 2019; 7:91. [PMID: 30984717 PMCID: PMC6449422 DOI: 10.3389/fped.2019.00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Several congenital disorders can cause end stage bladder disease and possibly renal damage in children. The current gold standard therapy is enterocystoplasty, a bladder augmentation using an intestinal segment. However, the use of bowel tissue is associated with numerous complications such as metabolic disturbance, stone formation, urine leakage, chronic infections, and malignancy. Urinary diversions using engineered bladder tissue would obviate the need for bowel for bladder reconstruction. Despite impressive progress in the field of bladder tissue engineering over the past decades, the successful transfer of the approach into clinical routine still represents a major challenge. In this review, we discuss major achievements and challenges in bladder tissue regeneration with a focus on different strategies to overcome the obstacles and to meet the need for living functional tissue replacements with a good growth potential and a long life span matching the pediatric population.
Collapse
Affiliation(s)
- Maya Horst
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Daniel Eberli
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Rita Gobet
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
| | - Souzan Salemi
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| |
Collapse
|
9
|
The utility of stem cells in pediatric urinary bladder regeneration. Pediatr Res 2018; 83:258-266. [PMID: 28915233 DOI: 10.1038/pr.2017.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Pediatric patients with a neurogenic urinary bladder, caused by developmental abnormalities including spina bifida, exhibit chronic urological problems. Surgical management in the form of enterocystoplasty is used to enlarge the bladder, but is associated with significant clinical complications. Thus, alternative methods to enterocystoplasty have been explored through the incorporation of stem cells with tissue engineering strategies. Within the context of this review, we will examine the use of bone marrow stem cells and induced pluripotent stem cells (iPSCs), as they relate to bladder regeneration at the anatomic and molecular levels. The use of bone marrow stem cells has demonstrated significant advances in bladder tissue regeneration as multiple aspects of bladder tissue have been recapitulated including the urothelium, bladder smooth muscle, vasculature, and peripheral nerves. iPSCs, on the other hand, have been well characterized and used in multiple tissue-regenerative settings, yet iPSC research is still in its infancy with regards to bladder tissue regeneration with recent studies describing the differentiation of iPSCs to the bladder urothelium. Finally, we examine the role of the Sonic Hedgehog signaling cascade that mediates the proliferative response during regeneration between bladder smooth muscle and urothelium. Taken together, this review provides a current, comprehensive perspective on bladder regeneration.
Collapse
|
10
|
Chan YY, Sandlin SK, Kurzrock EA, Osborn SL. The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering. Biomedicines 2017; 5:biomedicines5010004. [PMID: 28536347 PMCID: PMC5423492 DOI: 10.3390/biomedicines5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering.
Collapse
Affiliation(s)
- Yvonne Y Chan
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
| | - Samantha K Sandlin
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
- Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| | - Eric A Kurzrock
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
- Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| | - Stephanie L Osborn
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
- Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
11
|
Pokrywczynska M, Balcerczyk D, Jundzill A, Gagat M, Czapiewska M, Kloskowski T, Nowacki M, Gastecka AM, Bodnar M, Grzanka A, Marszalek A, Drewa T. Isolation, expansion and characterization of porcine urinary bladder smooth muscle cells for tissue engineering. Biol Proced Online 2016; 18:17. [PMID: 27524942 PMCID: PMC4982216 DOI: 10.1186/s12575-016-0047-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023] Open
Abstract
Background A key requirements for therapy utilizing the tissue engineering methodologies is use of techniques which have the capability to yield a high number of cells, from small tissue biopsy in a relatively short time. Up to date there was no optimal methods of isolation and expansion of urinary bladder smooth muscle cells (UB-SMCs). The aim of this study was to compare isolation and expansion techniques of UB-SMCs to select the most repeatable and efficient one. Method Five protocols of porcine UB- SMCs isolation including enzymatic and explant techniques and three expansion techniques were compared. Isolation effectiveness was evaluated using trypan blue assay. Cell phenotype was confirmed by immunofluorescence staining. Proliferation rate was analyzed using MTT and X- Celligence system. Cellular senescence was assessed measuring β-galactosidase activity. Results Enzymatic methods using collagenase with dispase (method I) or collagenase only (method III) allowed to isolate much larger number of cells than the methods using trypsin with collagenase (method II) and collagenase after digestion with trypsin (method IV). The success rate of establishment of primary culture was the highest when the isolated cells were cultured in the Smooth muscle Growth Medium-2 (SmGM-2). Expression of the smooth muscle markers- alpha smooth muscle actin and smoothelin was the highest for cells isolated by enzymatic method I and cultured in SmGM-2. There was no significant signs of cell senescence until the 8th passage. Conclusion The most efficient method of establishment of porcine UB-SMCs culture is enzymatic digestion of urinary bladder tissue with collagenase and dispase and culture of isolated cells in SmGM-2. This method was up to 10 times more efficient than other methods used for isolation and culture of UB-SMCs. This is an easy and consistent method for obtaining high numbers of urinary bladder smooth muscle cells.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Daria Balcerczyk
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Chair of Histology and Embryology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Monika Czapiewska
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Maciej Nowacki
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland ; Chair of Surgical Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Agata M Gastecka
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Alina Grzanka
- Chair of Histology and Embryology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland ; Department of Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Drewa
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland ; Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
12
|
Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci Rep 2016; 6:20784. [PMID: 26854200 PMCID: PMC4745101 DOI: 10.1038/srep20784] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/12/2016] [Indexed: 01/30/2023] Open
Abstract
Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.
Collapse
|
13
|
Ye K, Traianedes K, Choong PFM, Myers DE. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix. Front Surg 2016; 3:3. [PMID: 26858950 PMCID: PMC4726816 DOI: 10.3389/fsurg.2016.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 11/25/2022] Open
Abstract
Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.
Collapse
Affiliation(s)
- Ken Ye
- Department of Surgery, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia; Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Kathy Traianedes
- Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
| | - Peter F M Choong
- Department of Surgery, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia; Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Damian E Myers
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne , Fitzroy, VIC , Australia
| |
Collapse
|
14
|
3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:432645. [PMID: 26688810 PMCID: PMC4672115 DOI: 10.1155/2015/432645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disease which is due to the lack of β cells. The ideal therapy to cure the disease is pancreas transplantation, but its application is confined to a limited number of people due to the shortage of organ and the need for life-long immunosuppression. Regenerative medicine methods such as a tissue engineered pancreas seem to provide a useful method. In order to construct a microenvironment similar to the native pancreas that is suitable for not only cell growth but also cellular function exertion, a decellularized mouse pancreas was used as a natural 3D scaffold in this experiment. MIN-6 β cells were planted in the bioscaffold. The cell engraftment was verified by HE staining and SEM. Immunostaining procedures were performed to confirm the normal function of the engrafted cells. qRT-PCR demonstrated that insulin gene expression of the recellularized pancreas was upregulated compared with conventional plate-cultured cells. In vivo experiment was also accomplished to further evaluate the function of the recellularized bioscaffold and the result was inspiring. And beyond doubt this will bring new hope for type 1 diabetic patients.
Collapse
|
15
|
Current Bioengineering Methods for Whole Kidney Regeneration. Stem Cells Int 2015; 2015:724047. [PMID: 26089921 PMCID: PMC4452081 DOI: 10.1155/2015/724047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Kidney regeneration is likely to provide an inexhaustible source of tissues and organs for immunosuppression-free transplantation. It is currently garnering considerable attention and might replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, anatomical complications make kidney regeneration difficult. Here, we review recent advances in the field of kidney regeneration, including (i) the directed differentiation of induced pluripotent stem cells/embryonic stem cells into kidney cells; (ii) blastocyst decomplementation; (iii) use of a decellularized cadaveric scaffold; (iv) embryonic organ transplantation; and (v) use of a nephrogenic niche for growing xenoembryos for de novo kidney regeneration from stem cells. All these approaches represent potentially promising therapeutic strategies for the treatment of patients with chronic kidney disease. Although many obstacles to kidney regeneration remain, we hope that innovative strategies and reliable research will ultimately allow the restoration of renal function in patients with end-stage kidney disease.
Collapse
|
16
|
Mauney JR, Adam RM. Dynamic reciprocity in cell-scaffold interactions. Adv Drug Deliv Rev 2015; 82-83:77-85. [PMID: 25453262 DOI: 10.1016/j.addr.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/07/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies.
Collapse
|
17
|
Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:613439. [PMID: 25793199 PMCID: PMC4352424 DOI: 10.1155/2015/613439] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 12/14/2022]
Abstract
Construction of the urinary bladder de novo using tissue engineering technologies is the “holy grail” of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM). In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM.
Collapse
|
18
|
Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep 2014; 15:379. [PMID: 24375058 DOI: 10.1007/s11934-013-0379-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of chronic kidney disease continues to outpace the development of effective treatment strategies. For patients with advanced disease, renal replacement therapies approximate the filtration functions of the kidney at considerable cost and inconvenience, while failing to restore the resorptive and endocrine functions. Allogeneic transplantation remains the only restorative treatment, but donor shortage, surgical morbidity and the need for lifelong immunosuppression significantly limit clinical application. Emerging technologies in the fields of regenerative medicine and tissue engineering strive to address these limitations. We review recent advances in cell-based therapies, primordial allografts, bio-artificial organs and whole-organ bioengineering as they apply to renal regeneration. Collaborative efforts across these fields aim to produce a bioengineered kidney capable of restoring renal function in patients with end-stage disease.
Collapse
|
19
|
Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398069. [PMID: 25250319 PMCID: PMC4163448 DOI: 10.1155/2014/398069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
It is commonly stated that tissue engineering is the most promising approach to treat or replace failing tissues/organs. For this aim, a specific strategy should be planned including proper selection of biomaterials, fabrication techniques, cell lines, and signaling cues. A great effort has been pursued to develop suitable scaffolds for the restoration of a variety of tissues and a huge number of protocols ranging from in vitro to in vivo studies, the latter further differentiating into several procedures depending on the type of implantation (i.e., subcutaneous or orthotopic) and the model adopted (i.e., animal or human), have been developed. All together, the published reports demonstrate that the proposed tissue engineering approaches spread toward multiple directions. The critical review of this scenario might suggest, at the same time, that a limited number of studies gave a real improvement to the field, especially referring to in vivo investigations. In this regard, the present paper aims to review the results of in vivo tissue engineering experimentations, focusing on the role of the scaffold and its specificity with respect to the tissue to be regenerated, in order to verify whether an extracellular matrix-like device, as usually stated, could promote an expected positive outcome.
Collapse
|
20
|
Xiong Q, Lin H, Hua X, Liu L, Sun P, Zhao Z, Shen X, Cui D, Xu M, Chen F, Geng H. A nanomedicine approach to effectively inhibit contracture during bladder acellular matrix allograft-induced bladder regeneration by sustained delivery of vascular endothelial growth factor. Tissue Eng Part A 2014; 21:45-52. [PMID: 24947133 DOI: 10.1089/ten.tea.2013.0671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macroscopic evidence of contracture has been identified as a major issue during the regeneration process. We hypothesize that lack of angiogenesis is the primary cause of contracture and explore a nanomedicine approach to achieve sustained release of vascular endothelial growth factor (VEGF) to stimulate angiogenesis. We evaluate the efficacy of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for long-term (3 months) sustained release of VEGF in bladder acellular matrix allografts (BAMA) in a swine model. We anticipate that the sustained release of VEGF could stimulate angiogenesis along the regeneration process and thereby inhibit contracture. Bladder was replaced with BAMA (5×5 cm), modified with PLGA NPs encapsulated with VEGF in a pig model. The time points chosen for sampling were 1, 2, 4, and 12 weeks. The regenerated areas were then measured to obtain the contracture rate, and the extent of revascularization was calculated using histological and morphological features. In the control group of animals, the bladder was replaced with only BAMA. The in vivo release of VEGF was evident for ∼3 months, achieving the goal of long-acting sustained release, and successfully promoted the regeneration of blood vessels and smooth muscle fibers. In addition, less collagen deposition was observed in the experimental group compared with control. Most importantly, the inhibition of contracture was highly significant, and the ultimate contracture rate decreased by ∼57% in the experimental group compared with control. In isolated strips analysis, there were no significant differences between BAMA-regenerated (either VEGF added or not) and autogenous bladder. BAMA modified with VEGF-loaded PLGA-NPs can sustainably release VEGF in vivo (>3 months) to stimulate angiogenesis leading to the inhibition of contracture. This is the first study to report a viable nanomedicine-based strategy to overcome contracture during bladder regeneration induced by BAMA. Furthermore, this study also confirms that insufficient angiogenesis plays a crucial role in the onset of contracture.
Collapse
Affiliation(s)
- Qianwei Xiong
- 1 Department of Pediatric Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G. Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges. J Diabetes Sci Technol 2014; 8:159-169. [PMID: 24876552 PMCID: PMC4454093 DOI: 10.1177/1932296813519558] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Emergent technologies in regenerative medicine may soon overcome the limitations of conventional diabetes therapies. Collaborative efforts across the subfields of stem cell technology, islet encapsulation, and biomaterial carriers seek to produce a bioengineered pancreas capable of restoring endocrine function in patients with insulin-dependent diabetes. These technologies rely on a robust understanding of the extracellular matrix (ECM), the supportive 3-dimensional network of proteins necessary for cellular attachment, proliferation, and differentiation. Although these functions can be partially approximated by biosynthetic carriers, novel decellularization protocols have allowed researchers to discover the advantages afforded by the native pancreatic ECM. The native ECM has proven to be an optimal platform for recellularization and whole-organ pancreas bioengineering, an exciting new field with the potential to resolve the dire shortage of transplantable organs. This review seeks to contextualize recent findings, discuss current research goals, and identify future challenges of regenerative medicine as it applies to diabetes management.
Collapse
Affiliation(s)
| | - Ravi Katari
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timil Patel
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Andrea Peloso
- Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Surgery, School of Medicine, University of Pavia, Pavia, Italy
| | - Jon Mugweru
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kofi Owusu
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
22
|
Do mesenchymal stem cells modulate the milieu of reconstructed bladder wall? Arch Immunol Ther Exp (Warsz) 2013; 61:483-93. [PMID: 23974130 PMCID: PMC3898129 DOI: 10.1007/s00005-013-0249-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/05/2013] [Indexed: 12/17/2022]
Abstract
To evaluate the mesenchymal stem cells (MSCs) influence on cytokines and matrix metalloproteinases (MMPs) expression in rat bladder wall regeneration. MSCs cultures from the bone marrow were established. Acellular matrices from the bladder submucosa were prepared. Bladders were reconstructed using cell-seeded (n = 5) and unseeded (n = 5) grafts. MSCs were injected into the bladder wall (n = 5), bladders were incised and MSCs were injected into the circulation (n = 5) or were left intact (n = 5). Animals were killed after 3 months. Bladder histology and immunohistochemical staining of IL-2, IL-4, IL-6, IL-10, TNF-α, TGF-β1, IFN-γ, MMP-2, and MMP-9 were done. Bladders reconstructed with cell-seeded grafts mimicked native tissue, while unseeded grafts revealed shrinkage and morphological irregularities. There were no morphological changes in bladders of other groups. Different pattern of cytokine and MMP expression was observed. Increased expression of anti-inflammatory cytokines and MMPs in bladder promotes detrusor regeneration.
Collapse
|
23
|
Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013; 65:1091-133. [PMID: 23818131 DOI: 10.1124/pr.112.007393] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.
Collapse
Affiliation(s)
- George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | | | | | | |
Collapse
|
24
|
Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, Farney AC, Stratta RJ, Atala A, Opara EC, Soker S. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials 2013; 34:5488-95. [PMID: 23583038 DOI: 10.1016/j.biomaterials.2013.03.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/15/2013] [Indexed: 01/11/2023]
Abstract
Emergent technologies of regenerative medicine have the potential to overcome the limitations of organ transplantation by supplying tissues and organs bioengineered in the laboratory. Pancreas bioengineering requires a scaffold that approximates the biochemical, spatial and vascular relationships of the native extracellular matrix (ECM). We describe the generation of a whole organ, three-dimensional pancreas scaffold using acellular porcine pancreas. Imaging studies confirm that our protocol effectively removes cellular material while preserving ECM proteins and the native vascular tree. The scaffold was seeded with human stem cells and porcine pancreatic islets, demonstrating that the decellularized pancreas can support cellular adhesion and maintenance of cell functions. These findings advance the field of regenerative medicine towards the development of a fully functional, bioengineered pancreas capable of establishing and sustaining euglycemia and may be used for transplantation to cure diabetes mellitus.
Collapse
|
25
|
The use of regenerative medicine in the management of invasive bladder cancer. Adv Urol 2012; 2012:653652. [PMID: 23019421 PMCID: PMC3457671 DOI: 10.1155/2012/653652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/01/2012] [Indexed: 02/01/2023] Open
Abstract
Muscle invasive and recurrent nonmuscle invasive bladder cancers have been traditionally treated with a radical cystectomy and urinary diversion. The urinary diversion is generally accomplished through the creation of an incontinent ileal conduit, continent catheterizable reservoir, or orthotopic neobladder utilizing small or large intestine. While radical extirpation of the bladder is often successful from an oncological perspective, there is a significant morbidity associated with enteric interposition within the genitourinary tract. Therefore, there is a great opportunity to decrease the morbidity of the surgical management of bladder cancer through utilization of novel technologies for creating a urinary diversion without the use of intestine. Clinical trials using neourinary conduits (NUC) seeded with autologous smooth muscle cells are currently in progress and may represent a significant surgical advance, potentially eliminating the complications associated with the use of gastrointestinal segments in the urinary reconstruction, simplifying the surgical procedure, and greatly facilitating recovery from cystectomy.
Collapse
|
26
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|