1
|
Teixeira GTL, do Nascimento JPL, Gelamo RV, Moreto JA, Slade NBL. Strategies for Functionalization of Metallic Surfaces with Bioactive Peptides: a Mini Review. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
2
|
Rodriguez-Fernandez JC, Pastor F, Barrera Mora JM, Brizuela A, Puigdollers A, Espinar E, Gil FJ. Bacteriostatic Poly Ethylene Glycol Plasma Coatings for Orthodontic Titanium Mini-Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7487. [PMID: 36363077 PMCID: PMC9654847 DOI: 10.3390/ma15217487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Titanium mini-implants are used as anchorage for orthodontic tooth movements. However, these implants present problems due to the infection of surrounding tissues. The aim of this work was to obtain a polyethylene glycol (PEG) layer by plasma in order to achieve a bacteriostatic surface. Titanium surfaces were activated by argon plasma and, after, by PEG plasma with different powers (100, 150 and 200 W) for 30 and 60 min. The roughness was determined by white light interferometer microscopy and the wettability was determined by the contact angle technique. Surface chemical compositions were characterized by X-ray photoelectron spectroscopy (XPS) and cytocompatibility and cell adhesion studies were performed with fibroblast (hFFs) and osteoblast (SAOS-2) cells. Bacterial cultures with Spectrococcus Sanguinis and Lactobacillus Salivarius were performed, and bacterial colonization was determined. The results showed that plasma treatments do not affect the roughness. Plasma makes the surfaces more hydrophilic by decreasing the contact angles from 64.2° for titanium to 5.2° for argon-activated titanium, with values ranging from 12° to 25° for the different PEG treatments. The plasma has two effects: the cleaning of the surface and the formation of the PEG layer. The biocompatibility results were, for all cases, higher than 80%. The polymerization treatment with PEG reduced the adhesion of hFFs from 7000 to 6000 and, for SAOS-2, from 14,000 to 6500, for pure titanium and those treated with PEG, respectively. Bacterial adhesion was also reduced from 600 to 300 CFU/mm2 for Spetrococcuns Sanguinis and from 10,000 to 900 CFU/mm2 for Lactobacillus Salivarius. The best bacteriostatic treatment corresponded to PEG at 100 W and 30 s. As a consequence, the PEG coating would significantly prevent the formation of bacterial biofilm on the surface of titanium mini-implants.
Collapse
Affiliation(s)
| | - Francisco Pastor
- Dept. Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Jose Maria Barrera Mora
- Dept. Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Dept. Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Dept. Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - F. Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicia y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
3
|
Liu Y, He L, Li J, Luo J, Liang K, Yin D, Tao S, Yang J, Li J. Mussel-Inspired Organic–Inorganic Implant Coating Based on a Layer-by-Layer Method for Anti-infection and Osteogenesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- School of Stomatology, Shandong First Medical University, Jinan 250021, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Shimabukuro M. Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review. Antibiotics (Basel) 2020; 9:E716. [PMID: 33092058 PMCID: PMC7589568 DOI: 10.3390/antibiotics9100716] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties.
Collapse
Affiliation(s)
- Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Sikkema R, Baker K, Zhitomirsky I. Electrophoretic deposition of polymers and proteins for biomedical applications. Adv Colloid Interface Sci 2020; 284:102272. [PMID: 32987293 DOI: 10.1016/j.cis.2020.102272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022]
Abstract
This review is focused on new electrophoretic deposition (EPD) mechanisms for deposition biomacromolecules, such as biopolymers, proteins and enzymes. Among the rich literature sources of EPD of biopolymers, proteins and enzymes for biomedical applications we selected papers describing new fundamental deposition mechanisms. Such deposition mechanisms are of critical importance for further development of EPD method and its emerging biomedical applications. Our goal is to emphasize innovative ideas which have enriched colloid and interface science of EPD during recent years. We describe various mechanisms of cathodic and anodic EPD of charged biopolymers. Special attention is focused on in-situ chemical modification of biopolymers and crosslinking techniques. Recent innovations in the development of natural and biocompatible charged surfactants and film forming agents are outlined. Among the important advances in this area are the applications of bile acids and salts for EPD of neutral polymers. Such innovations allowed for the successful EPD of various electrically neutral functional polymers for biomedical applications. Particularly important are biosurfactant-polymer interactions, which facilitate dissolution, dispersion, charging, electrophoretic transport and deposit formation. Recent advances in EPD mechanisms addressed the problem of EPD of proteins and enzymes related to their charge reversal at the electrode surface. Conceptually new methods are described, which are based on the use of biopolymer complexes with metal ions, proteins, enzymes and other biomolecules. This review describes new developments in co-deposition of biomacromolecules and future trends in the development of new EPD mechanisms and strategies for biomedical applications.
Collapse
Affiliation(s)
- Rebecca Sikkema
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Kayla Baker
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Polyethylene Glycol Pulsed Electrodeposition for the Development of Antifouling Coatings on Titanium. COATINGS 2020. [DOI: 10.3390/coatings10050456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Titanium dental implants are widely used for the replacement of damaged teeth. However, bacterial infections at the interface between soft tissues and the implant can impair the functionality of the device and lead to failure. In this work, the preparation of an antifouling coating of polyethylene glycol (PEG) on titanium by pulsed electrodeposition was investigated in order to reduce Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) adhesion while maintaining human fibroblast adhesion. Different pulsed conditions were prepared and characterized by contact angle, Focused Ion Beam (FIB), Fourier Transformed Infrared Spectroscopy in the Attenuated Total Reflectance mode (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). XPS tested fibronectin adsorption. S. aureus, E. coli and human fibroblast adhesion was tested in vitro in both mono and co-culture settings. Physicochemical characterization proved useful for confirming the presence of PEG and evaluating the efficiency of the coating methods. Fibronectin adsorption decreased for all of the conditions, but an adsorption of 20% when compared to titanium was maintained, which supported fibroblast adhesion on the surfaces. In contrast, S. aureus and E. coli attachment on coated surfaces decreased up to 90% vs. control titanium. Co-culture studies with the two bacterial strains and human fibroblasts showed the efficacy of the coatings to allow for eukaryotic cell adhesion, even in the presence of pre-adhered bacteria.
Collapse
|
7
|
Hanawa T. Titanium-Tissue Interface Reaction and Its Control With Surface Treatment. Front Bioeng Biotechnol 2019; 7:170. [PMID: 31380361 PMCID: PMC6650641 DOI: 10.3389/fbioe.2019.00170] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Titanium (Ti) and its alloys are widely used for medical and dental implant devices-artificial joints, bone fixators, spinal fixators, dental implant, etc. -because they show excellent corrosion resistance and good hard-tissue compatibility (bone formation and bone bonding ability). Osseointegration is the first requirement of the interface structure between titanium and bone tissue. This concept of osseointegration was immediately spread to dental-materials researchers worldwide to show the advantages of titanium as an implant material compared with other metals. Since the concept of osseointegration was developed, the cause of osseointegration has been actively investigated. The surface chemical state, adsorption characteristics of protein, and bone tissue formation process have also been evaluated. To accelerate osseointegration, roughened and porous surfaces are effective. HA and TiO2 coatings prepared by plasma spray and an electrochemical technique, as well as alkalinization of the surface, are also effective to improve hard-tissue compatibility. Various immobilization techniques for biofunctional molecules have been developed for bone formation and prevention of platelet and bacteria adhesion. These techniques make it possible to apply Ti to a scaffold of tissue engineering. The elucidation of the mechanism of the excellent biocompatibility of Ti can provide a shorter way to develop optimal surfaces. This review should enhance the understanding of the properties and biocompatibility of Ti and highlight the significance of surface treatment.
Collapse
Affiliation(s)
- Takao Hanawa
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Hoyos-Nogués M, Buxadera-Palomero J, Ginebra MP, Manero JM, Gil F, Mas-Moruno C. All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids Surf B Biointerfaces 2018; 169:30-40. [DOI: 10.1016/j.colsurfb.2018.04.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
|
9
|
Bakhshandeh S, Amin Yavari S. Electrophoretic deposition: a versatile tool against biomaterial associated infections. J Mater Chem B 2018; 6:1128-1148. [PMID: 32254176 DOI: 10.1039/c7tb02445b] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomaterial-associated infections (BAIs) are today considered as one of the most withering complications of orthopedic implant surgery. Even though BAIs occur relatively infrequently in primary joint replacement surgeries (incidence rates around 1-2%), revision arthroplasties carry up to 40% risk of infection recurrence, with devastating consequences for the patient and significant associated cost. Once the responsible pathogens, mainly bacteria, attach to the surface of the biomaterial, they start creating layers of extracellular matrix with complex architectures, called biofilms. These last mentioned, encapsulate and protect bacteria by hindering the immune response and impeding antibiotics from reaching the pathogens. To prevent such an outcome, the surface of the biomaterials, in particular implants, can be modified in order to play the role of inherent drug delivery devices or as substrates for antibacterial/multifunctional coating deposition. This paper presents an overview of novel electrochemically-triggered deposition strategies, with a focus on electrophoretic deposition (EPD), a versatile and cost-effective technique for organic and inorganic material deposition. Other than being a simple deposition tool, EPD has been recently employed to create novel micro/nanostructured surfaces for multi-purpose antibacterial approaches, presented in detail in this review. In addition, a thorough comparison and assessment of the latest antibacterial and multifunctional compounds deposited by means of EPD have been reported, followed by a critical reflection on current and future prospects of the topic. The relative simplicity of EPD's application, has, by some means, undermined the fundamental requirement of rationality of multifunctional coating design. The demanding practical needs for a successful clinical translation in the growing fields of tissue engineering and antibacterial/multifunctional implant coatings, calls for a more systematic in vitro experimental design rationale, in order to make amends for the scarcity of significant in vivo and clinical studies.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
10
|
Self-Assembled Monolayers for Dental Implants. Int J Dent 2018; 2018:4395460. [PMID: 29552036 PMCID: PMC5818935 DOI: 10.1155/2018/4395460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.
Collapse
|
11
|
Effectiveness of a new dental implant bioactive surface: histological and histomorphometric comparative study in minipigs. Clin Oral Investig 2017; 22:1423-1432. [PMID: 29022215 DOI: 10.1007/s00784-017-2223-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/27/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The objective of this study was to assess, by histomorphometric analysis, the degree of bone apposition on two types of dental implant's surfaces: a novel implant that combines Al2O3 abrasive particle blasting with thermochemical treatment (ContacTi), compared to a standard surface treatment obtained by sandblasting and acid etching (shot blasting). MATERIALS AND METHODS Twelve minipigs were used, placing the studied implants in the maxillae, and divided into three groups according to the time of sacrifice: 2, 4, and 8 weeks after implant placement. Histological and histomorphometric analyses were performed following standardized tissue polymerization, cutting, and staining and examined under optical and high-resolution electron microscope. RESULTS For all measurements, the novel surface presented higher levels of osseointegration as compared to the shot blasting surface. Bone to implant contact (BIC) in the maxillae for ContacTi presented values of 49.02, 83.20, and 85.58% at 2, 4, and 8 weeks, respectively, significantly higher compared to the shot blasting surface values of 39.32, 46.53, and 46.20% for the same time points. Bone area density (BAD) presented values of 26.52, 61.21, and 59.50% for ContacTi surface implants and 22.95, 36.26, and 49.50% for the shot blasted surface implants. Signs of osteoconductivity were observed in the ContacTi surfaces at 2 weeks. CONCLUSIONS The ContacTi surface achieved a faster growth of hard tissues around the implants, when compared to the shot blasting surface, and for all evaluated histomorphometric parameters, the values were higher at all measured time points. CLINICAL RELEVANCE ContacTi could be a new surface improving the osseointegration in oral implantology.
Collapse
|
12
|
Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol 2017; 57:728-743. [PMID: 28594071 DOI: 10.1002/jobm.201700071] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Abstract
There is an increasing trend in the food industry on the Listeria monocytogenes biofilm formation and inhibition. This is attributed to its easy survival on contact surfaces, resistance to disinfectants or antibiotics and growth under the stringent condition used for food processing and preservation thereby leading to food contamination products by direct or indirect exposure. Though, there is a lack of conclusive evidences about the mechanism of biofilm formation, in this review, the concept of biofilm formation and various chemical, physical, and green technology approaches to prevent or control the biofilm formed is discussed. State-of-the-art approaches ranging from the application of natural to synthetic molecules with high effectiveness and non-toxicity targeted at the different steps of biofilm formation could positively influence the biofilm inhibition in the future.
Collapse
Affiliation(s)
- Sandra F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
13
|
Biofunctional polyethylene glycol coatings on titanium: An in vitro -based comparison of functionalization methods. Colloids Surf B Biointerfaces 2017; 152:367-375. [DOI: 10.1016/j.colsurfb.2017.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/25/2023]
|
14
|
GRISCHKE J, EBERHARD J, STIESCH M. Antimicrobial dental implant functionalization strategies —A systematic review. Dent Mater J 2016; 35:545-58. [DOI: 10.4012/dmj.2015-314] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jasmin GRISCHKE
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| | - Jörg EBERHARD
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| | - Meike STIESCH
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| |
Collapse
|
15
|
Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases 2015; 10:029505. [DOI: 10.1116/1.4913376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Fukuhara Y, Kyuzo M, Tsutsumi Y, Nagai A, Chen P, Hanawa T. Phospholipid polymer electrodeposited on titanium inhibits platelet adhesion. J Biomed Mater Res B Appl Biomater 2015; 104:554-60. [DOI: 10.1002/jbm.b.33423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Fukuhara
- Department of Materials Engineering; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
| | - Megumi Kyuzo
- Department of Materials Engineering; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
| | - Yusuke Tsutsumi
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| | - Akiko Nagai
- Department of Materials Engineering; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| | - Peng Chen
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| | - Takao Hanawa
- Department of Materials Engineering; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
17
|
Seo JH, Tsutsumi Y, Kobari A, Shimojo M, Hanawa T, Yui N. Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces. SOFT MATTER 2015; 11:936-942. [PMID: 25515504 DOI: 10.1039/c4sm02082k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A Velcro-like poly(ethylene glycol) (PEG) interface was prepared in order to control the friction dynamics of material surfaces. Graft- and loop-type PEGs were formed on mirror-polished Ti surfaces using an electrodeposition method with mono- and di-amine functionalized PEGs. The friction dynamics of various combinations of PEG surfaces (i.e., graft-on-graft, loop-on-loop, graft-on-loop, and loop-on-graft) were investigated by friction testing. Here, only the Velcro-like combinations (graft-on-loop and loop-on-graft) exhibited a reversible friction behavior (i.e., resetting the kinetic friction coefficient and the reappearance of the maximum static friction coefficient) during the friction tests. The same tendency was observed when the molecular weights of loop- and graft-type PEGs were tested at 1 k and 10 k, respectively. This indicates that a Velcro-like friction behavior could be induced by simply changing the conformation of PEGs, which suggests a novel concept of altering polymer surfaces for the effective control of friction dynamics.
Collapse
Affiliation(s)
- Ji-Hun Seo
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Peñalba Arias P, Furustrand Tafin U, Bétrisey B, Vogt S, Trampuz A, Borens O. Activity of bone cement loaded with daptomycin alone or in combination with gentamicin or PEG600 against Staphylococcus epidermidis biofilms. Injury 2015; 46:249-53. [PMID: 25498330 DOI: 10.1016/j.injury.2014.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/11/2014] [Accepted: 11/16/2014] [Indexed: 02/02/2023]
Abstract
Daptomycin is a promising candidate for local treatment of bone infection due to its activity against multi-resistant staphylococci. We investigated the activity of antibiotic-loaded PMMA against Staphylococcus epidermidis biofilms using an ultra-sensitive method bacterial heat detection method (microcalorimetry). PMMA cylinders loaded with daptomycin alone or in combination with gentamicin or PEG600, vancomycin and gentamicin were incubated with S. epidermidis-RP62A in tryptic soy broth (TSB) for 72 h. Cylinders were thereafter washed and transferred in microcalorimetry ampoules pre-filled with TSB. Bacterial heat production, proportional to the quantity of biofilm on the PMMA, was measured by isothermal microcalorimetry at 37 °C. Heat detection time was considered time to reach 20 μW. Experiments were performed in duplicate. The heat detection time was 5.7-7.0 h for PMMA without antibiotics. When loaded with 5% of daptomycin, vancomycin or gentamicin, detection times were 5.6-16.4 h, 16.8-35.7 h and 4.7-6.2 h, respectively. No heat was detected when 5% gentamicin or 0.5% PEG600 was added to the daptomycin-loaded PMMA. The study showed that vancomycin was superior to daptomycin and gentamicin in inhbiting staphylococcal adherence in vitro. However, PMMA loaded with daptomycin combined with gentamicin or PEG600 completely inhibited S. epidermidis-biofilm formation. PMMA loaded with these combinations may represent effective strategies for local treatment in the presence of multi-resistant staphylococci.
Collapse
Affiliation(s)
- Patricio Peñalba Arias
- Service of Orthopaedics and Traumatology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | - Ulrika Furustrand Tafin
- Septic Surgical Unit, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | - Bertrand Bétrisey
- Service of Infectious Diseases, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | - Sebastian Vogt
- Research and Development, Heraeus Medical GmbH, Philipp-Reis-Straße 13, 61273 Wehrheim, Germany.
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-University Medicine, Free and Humboldt-University of Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Olivier Borens
- Service of Orthopaedics and Traumatology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; Septic Surgical Unit, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
19
|
Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: Anin vitrocell culture study. Biointerphases 2014; 9:031003. [DOI: 10.1116/1.4878461] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
KAWABE A, NAKAGAWA I, KANNO Z, TSUTSUMI Y, HANAWA T, ONO T. Evaluation of biofilm formation in the presence of saliva on poly(ethylene glycol)deposited titanium. Dent Mater J 2014; 33:638-47. [DOI: 10.4012/dmj.2014-025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
MORITA Y, IMAI S, HANYUDA A, MATIN K, HANADA N, NAKAMURA Y. Effect of silver ion coating of fixed orthodontic retainers on the growth of oral pathogenic bacteria. Dent Mater J 2014; 33:268-74. [DOI: 10.4012/dmj.2013-216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation. Acta Biomater 2013; 9:6236-44. [PMID: 23212080 DOI: 10.1016/j.actbio.2012.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022]
Abstract
Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with new physiochemical properties. The D-K122-4-modified surface substantially decreases biofilm formation compared to the RI-K122-4 and D+RI surfaces.
Collapse
|
23
|
Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2059-69. [PMID: 23498233 DOI: 10.1016/j.msec.2013.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/21/2012] [Accepted: 01/13/2013] [Indexed: 11/20/2022]
Abstract
Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively.
Collapse
|
24
|
Hanawa T. Research and development of metals for medical devices based on clinical needs. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064102. [PMID: 27877526 PMCID: PMC5099759 DOI: 10.1088/1468-6996/13/6/064102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/13/2012] [Accepted: 10/18/2012] [Indexed: 05/27/2023]
Abstract
The current research and development of metallic materials used for medicine and dentistry is reviewed. First, the general properties required of metals used in medical devices are summarized, followed by the needs for the development of α + β type Ti alloys with large elongation and β type Ti alloys with a low Young's modulus. In addition, nickel-free Ni-Ti alloys and austenitic stainless steels are described. As new topics, we review metals that are bioabsorbable and compatible with magnetic resonance imaging. Surface treatment and modification techniques to improve biofunctions and biocompatibility are categorized, and the related problems are presented at the end of this review. The metal surface may be biofunctionalized by various techniques, such as dry and wet processes. These techniques make it possible to apply metals to scaffolds in tissue engineering.
Collapse
|
25
|
Takenaka S, Ohshima H, Ohsumi T, Okiji T. Current and future strategies for the control of mature oral biofilms—Shift from a bacteria-targeting to a matrix-targeting approach. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci 2011; 41:263-72. [PMID: 22324003 PMCID: PMC3259234 DOI: 10.5051/jpis.2011.41.6.263] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/10/2011] [Indexed: 11/08/2022] Open
Abstract
A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO(2). In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.
Collapse
Affiliation(s)
- Takao Hanawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Poly(Ethylene Glycol) and Hydroxy Functionalized Alkane Phosphate Self-Assembled Monolayers Reduce Bacterial Adhesion and Support Osteoblast Proliferation. Int J Artif Organs 2011; 34:898-907. [DOI: 10.5301/ijao.5000047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/19/2022]
Abstract
Purpose Presently there is interest today in designing improved titanium surfaces capable of high bioactivity in order to promote strong anchorage of the bone surrounding implants while at the same time discouraging bioadhesion. Poly(ethylene glycol)-modified (PEG) alkane phosphate and OH-terminated alkane phosphates have been demonstrated to be spontaneously adsorbed onto titanium oxide surfaces and produce surfaces with different protein resistance in relation to the PEG surface density. This study aims to evaluate caries-associated Streptococcus mutans (S. mutans) adhesion and osteoblast proliferation while varying the PEG surface density of titanium surfaces. Methods Bacterial adhesion was quantified by fluorescence microscopy and SAOS-2 human osteoblast proliferation was evaluated up to 7 days of culture in vitro. Metabolic activity of osteoblasts was measured by MTT test and the secretion of extracellular matrix proteins (osteopontin, osteocalcin and type I collagen) in culture medium was determined by immunoenzymatic assays. Results As the PEG surface density increased, the bacterial adhesion considerably decreased when compared to uncoated titanium surfaces. The monomolecular coatings proved to be capable of supporting osteoblast proliferation with the greatest levels of metabolic activity at the highest PEG surface concentrations. Conclusions These results are extremely promising for potential clinical application in implant uses where both reduction of bacteria adhesion and stimulation of bone formation are highly desirable.
Collapse
|