1
|
Sharma V, Gupta RK, Kailas SV, Basu B. Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite. J Biomater Appl 2022; 37:204-218. [PMID: 35502987 DOI: 10.1177/08853282221085633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) and its derivatives have been clinically used as an acetabular liner material in total hip joint replacement (THR) over last six decades. Despite significant efforts, the longevity of UHMWPE implants is still impaired due to their compromised tribological performance, leading to osteolysis and aseptic loosening. The present study aims to critically evaluate and analyze the tribological performance, of the next generation acetabular liner material, that is, a chemically modified graphene oxide (GO) reinforced HDPE/UHMWPE (HU) bionanocomposite (HUmGO), against stainless steel (SS 316L) counterface in lubricated conditions. This work also provides a performance comparative assessment of HUmGO with respect to medical grades, UHMWPE (UC) and crosslinked UHMWPE (XL-UC). Significant attempts have been made to correlate the tribological properties (frictional behavior, wear rate, wear debris shape and size, wear mechanism) with the physicomechanical conditions (contact stresses) at sliding contact and the variation in molecular architecture of different UHMWPE materials. Additionally, an emphasis is put forward to critically anlyze the nature of lubrication regime based on the bearing characterstic parameters. HUmGO exhibited a lower COF (0.07) and specific wear rate (2.86 × 10-8 mm3/Nm) than UC and XL-UC under identical sliding conditions. The worn surfaces on HUmGO revealed the signatures of less abrasive wear and limited deformation. Based on the estimated lambda (λ) ratio and Sommerfield number, all the investigated sliding contacts exhibited boundary lubrication. Taken together, the modified GO reinforced HDPE/UHMWPE bionanocomposite can be considered as a new generation biomaterial for the fabrication of acetabular liner for hip-joint prosthesis.
Collapse
Affiliation(s)
- Vidushi Sharma
- Laboratory for Biomaterials, Materials Research Centre, 29120Indian Institute of Science, Bangalore, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, 29120Indian Institute of Science, Bangalore, India
| | - Rajeev K Gupta
- Surface Interaction and Manufacturing Laboratory, Department of Mechanical Engineering, 29120Indian Institute of Science, Bangalore, India
| | - Satish V Kailas
- Surface Interaction and Manufacturing Laboratory, Department of Mechanical Engineering, 29120Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, 29120Indian Institute of Science, Bangalore, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, 29120Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, 29120Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
3
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
4
|
Wang G, Zhu Y, Zan X, Li M. Endowing Orthopedic Implants' Antibacterial, Antioxidation, and Osteogenesis Properties Through a Composite Coating of Nano-Hydroxyapatite, Tannic Acid, and Lysozyme. Front Bioeng Biotechnol 2021; 9:718255. [PMID: 34350164 PMCID: PMC8327088 DOI: 10.3389/fbioe.2021.718255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
There is a substantial global market for orthopedic implants, but these implants still face the problem of a high failure rate in the short and long term after implantation due to the complex physiological conditions in the body. The use of multifunctional coatings on orthopedic implants has been proposed as an effective way to overcome a range of difficulties. Here, a multifunctional (TA@HA/Lys)n coating composed of tannic acid (TA), hydroxyapatite (HA), and lysozyme (Lys) was fabricated in a layer-by-layer (LBL) manner, where TA deposited onto HA firmly stuck Lys and HA together. The deposition of TA onto HA, the growth of (TA@HA/Lys)n, and multiple related biofunctionalities were thoroughly investigated. Our data demonstrated that such a hybrid coating displayed antibacterial and antioxidant effects, and also facilitated the rapid attachment of cells [both mouse embryo osteoblast precursor cells (MC3T3-E1) and dental pulp stem cells (DPSCs)] in the early stage and their proliferation over a long period. This accelerated osteogenesis in vitro and promoted bone formation in vivo. We believe that our findings and the developed strategy here could pave the way for multifunctional coatings not only on orthopedic implants, but also for additional applications in catalysts, sensors, tissue engineering, etc.
Collapse
Affiliation(s)
- Guofeng Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yaxin Zhu
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingjie Zan
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Meng Li
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Nayak C, Balani K. Effects of reinforcements and
gamma‐irradiation
on wear performance of
ultra‐high
molecular weight polyethylene as acetabular cup liner in
hip‐joint
arthroplasty: A review. J Appl Polym Sci 2021. [DOI: 10.1002/app.51275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chinmayee Nayak
- Department of Materials Science and Engineering Indian Institute of Technology Kanpur India
| | - Kantesh Balani
- Department of Materials Science and Engineering Indian Institute of Technology Kanpur India
- Advanced Centre for Materials Science Indian Institute of Technology Kanpur India
| |
Collapse
|
6
|
Nanocomposites for Enhanced Osseointegration of Dental and Orthopedic Implants Revisited: Surface Functionalization by Carbon Nanomaterial Coatings. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few decades, carbon nanomaterials, including carbon nanofibers, nanocrystalline diamonds, fullerenes, carbon nanotubes, carbon nanodots, and graphene and its derivatives, have gained the attention of bioengineers and medical researchers as they possess extraordinary physicochemical, mechanical, thermal, and electrical properties. Recently, surface functionalization with carbon nanomaterials in dental and orthopedic implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for osseointegration. Numerous developments in fabrication and biological studies of carbon nanostructures have provided various novel opportunities to expand their application to hard tissue regeneration and restoration. In this minireview, the recent research trends in surface functionalization of orthopedic and dental implants with coating carbon nanomaterials are summarized. In addition, some seminal methodologies for physicomechanical and electrochemical coatings are discussed. In conclusion, it is shown that further development of surface functionalization with carbon nanomaterials may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
|
7
|
Peng Z, Zhao T, Zhou Y, Li S, Li J, Leblanc RM. Bone Tissue Engineering via Carbon-Based Nanomaterials. Adv Healthc Mater 2020; 9:e1901495. [PMID: 31976623 DOI: 10.1002/adhm.201901495] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Bone tissue engineering (BTE) has received significant attention due to its enormous potential in treating critical-sized bone defects and related diseases. Traditional materials such as metals, ceramics, and polymers have been widely applied as BTE scaffolds; however, their clinical applications have been rather limited due to various considerations. Recently, carbon-based nanomaterials attract significant interests for their applications as BTE scaffolds due to their superior properties, including excellent mechanical strength, large surface area, tunable surface functionalities, high biocompatibility as well as abundant and inexpensive nature. In this article, recent studies and advancements on the use of carbon-based nanomaterials with different dimensions such as graphene and its derivatives, carbon nanotubes, and carbon dots, for BTE are reviewed. Current challenges of carbon-based nanomaterials for BTE and future trends in BTE scaffolds development are also highlighted and discussed.
Collapse
Affiliation(s)
- Zhili Peng
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tianshu Zhao
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Shanghao Li
- MP Biomedicals, 9 Goddard, Irvine, CA, 92618, USA
| | - Jiaojiao Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
8
|
Sharma V, Bose S, Kundu B, Bodhak S, Mitun D, Balla VK, Basu B. Probing the Influence of γ-Sterilization on the Oxidation, Crystallization, Sliding Wear Resistance, and Cytocompatibility of Chemically Modified Graphene-Oxide-Reinforced HDPE/UHMWPE Nanocomposites and Wear Debris. ACS Biomater Sci Eng 2020; 6:1462-1475. [PMID: 33455381 DOI: 10.1021/acsbiomaterials.9b01327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteolysis and aseptic loosening due to wear at the articulating interfaces of prosthetic joints are considered to be the key concerns for implant failure in load-bearing orthopedic applications. In an effort to reduce the wear and processing difficulties of ultrahigh-molecular-weight polyethylene (UHMWPE), our research group recently developed high-density polyethylene (HDPE)/UHMWPE nanocomposites with chemically modified graphene oxide (mGO). Considering the importance of sterilization, this work explores the influence of γ-ray dosage of 25 kGy on the clinically relevant performance-limiting properties of these newly developed hybrid nanocomposites in vitro. Importantly, this work also probes into the cytotoxic effects of the wear debris of different compositions and sizes on MC3T3 murine osteoblasts and human mesenchymal stem cells (hMSCs). In particular, γ-ray-sterilized 1 wt % mGO-reinforced HDPE/UHMWPE nanocomposites exhibit an improvement in the oxidation index (16%), free energy of immersion (-12.1 mN/m), surface polarity (5.0%), and hardness (42%). Consequently, such enhancements result in better tribological properties, especially coefficient of friction (+13%) and wear resistance, when compared with UHMWPE. A spectrum of analyses using transmission electron microscopy (TEM) and in vitro cytocompatibility assessment demonstrate that phagocytosable (0.5-4.5 μm) sterilized 1 mGO wear particles, when present in culture media at 5 mg/mL concentration, induce neither significant reduction in MC3T3 murine osteoblast and hMSC growth nor cell morphology phenotype, during 24, 48, and 72 h of incubation. Taken together, this study suggests that γ-ray-sterilized HDPE/UHMWPE/mGO nanocomposites can be utilized as promising articulating surfaces for total joint replacements.
Collapse
Affiliation(s)
- Vidushi Sharma
- Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Biswanath Kundu
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhadip Bodhak
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Das Mitun
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India.,Biomaterials and Corrosion Laboratory, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India.,Materials Innovation Guild, Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky 40208, United States
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Comparison of Properties of the Hybrid and Bilayer MWCNTs—Hydroxyapatite Coatings on Ti Alloy. COATINGS 2019. [DOI: 10.3390/coatings9100643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon nanotubes are proposed for reinforcement of the hydroxyapatite coatings to improve their adhesion, resistance to mechanical loads, biocompatibility, bioactivity, corrosion resistance, and antibacterial protection. So far, research has shown that all these properties are highly susceptible to the composition and microstructure of coatings. The present research is aimed at studies of multi-wall carbon nanotubes in three different combinations: multi-wall carbon nanotubes layer, bilayer coating composed of multi-wall carbon nanotubes deposited on nanohydroxyapatite deposit, and hybrid coating comprised of simultaneously deposited nanohydroxyapatite, multi-wall carbon nanotubes, nanosilver, and nanocopper. The electrophoretic deposition method was applied for the fabrication of the coatings. Atomic force microscopy, scanning electron microscopy and X-ray electron diffraction spectroscopy, and measurements of water contact angle were applied to study the chemical and phase composition, roughness, adhesion strength and wettability of the coatings. The results show that the pure multi-wall carbon nanotubes layer possesses the best adhesion strength, mechanical properties, and biocompatibility. Such behavior may be attributed to the applied deposition method, resulting in the high hardness of the coating and high adhesion of carbon nanotubes to the substrate. On the other hand, bilayer coating, and hybrid coating demonstrated insufficient properties, which could be the reason for the presence of soft porous hydroxyapatite and some agglomerates of nanometals in prepared coatings.
Collapse
|
10
|
Rajesh K, Rangaswamy MK, Zhang C, Haldar S, Kumarasamy M, Agarwal A, Roy P, Lahiri D. Surface Modified Metallic Orthopedic Implant for Sustained Drug Release and Osteocompatibility. ACS APPLIED BIO MATERIALS 2019; 2:4181-4192. [DOI: 10.1021/acsabm.9b00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kanike Rajesh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Manoj Kumar Rangaswamy
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Cheng Zhang
- Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Swati Haldar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Murali Kumarasamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Arvind Agarwal
- Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
11
|
Manoj Kumar R, Rajesh K, Haldar S, Gupta P, Murali K, Roy P, Lahiri D. Surface modification of CNT reinforced UHMWPE composite for sustained drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Biocompatibility Characteristics of Titanium Coated with Multi Walled Carbon Nanotubes-Hydroxyapatite Nanocomposites. MATERIALS 2019; 12:ma12020224. [PMID: 30634682 PMCID: PMC6356870 DOI: 10.3390/ma12020224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/17/2022]
Abstract
Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.
Collapse
|
13
|
|
14
|
Iyer SB, Dube A, Dube N, Roy P, Sailaja R. Sliding wear and friction characteristics of polymer nanocomposite PAEK-PDMS with nano-hydroxyapatite and nano-carbon fibres as fillers. J Mech Behav Biomed Mater 2018; 86:23-32. [DOI: 10.1016/j.jmbbm.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
|
15
|
Jin Y, Chen S, Li N, Liu Y, Cheng G, Zhang C, Wang S, Zhang J. Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways. SCIENCE CHINA-LIFE SCIENCES 2018; 61:464-475. [PMID: 29623549 DOI: 10.1007/s11427-017-9258-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
When orthopedic joints coated by hydroxyapatite (HA) were implanted in the human body, they release wear debris into the surrounding tissues. The generation and accumulation of wear particles will induce aseptic loosening. However, the potential bioeffect and mechanism of HA-coated orthopedic implants on bone cells are poorly understood. In this study, defect-related luminescent bur-like hydroxyapatite (BHA) microspheres with the average diameter of 7-9 μm which are comparable to that of the wear-debris particles from aseptically loosened HA implants or HA debris have been synthesized by hydrothermal synthesis and the MC3T3-E1 cells were set as a cells model to study the potential bioeffect and mechanism of BHA microspheres. The studies demonstrated that BHA microspheres could be taken into MC3T3-E1 cells via endocytosis involved in micropinocytosis- and clathrin-mediated endocytosis process, and exert cytotoxicity effect. BHA microspheres could induce the cell apoptosis by intracellular production of reactive oxygen species (ROS), which led to not only an increase in the permeability of lysosome and release of cathepsins B, but also mitochondrial dysfunction and DNA damage. Our results provide novel evidence to elucidate their toxicity mechanisms and might be helpful for more reasonable applications of HA-based orthopaedic implants in the future.
Collapse
Affiliation(s)
- Yi Jin
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
- Medical College of Hebei University, Baoding, 071000, China
| | - Shizhu Chen
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Nan Li
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yajing Liu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Gong Cheng
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Cuimiao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
16
|
Nautiyal P, Alam F, Balani K, Agarwal A. The Role of Nanomechanics in Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193838 DOI: 10.1002/adhm.201700793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Nanomechanics has played a vital role in pushing our capability to detect, probe, and manipulate the biological species, such as proteins, cells, and tissues, paving way to a deeper knowledge and superior strategies for healthcare. Nanomechanical characterization techniques, such as atomic force microscopy, nanoindentation, nanotribology, optical tweezers, and other hybrid techniques have been utilized to understand the mechanics and kinetics of biospecies. Investigation of the mechanics of cells and tissues has provided critical information about mechanical characteristics of host body environments. This information has been utilized for developing biomimetic materials and structures for tissue engineering and artificial implants. This review summarizes nanomechanical characterization techniques and their potential applications in healthcare research. The principles and examples of label-free detection of cancers and myocardial infarction by nanomechanical cantilevers are discussed. The vital importance of nanomechanics in regenerative medicine is highlighted from the perspective of material selection and design for developing biocompatible scaffolds. This review interconnects the advancements made in fundamental materials science research and biomedical technology, and therefore provides scientific insight that is of common interest to the researchers working in different disciplines of healthcare science and technology.
Collapse
Affiliation(s)
- Pranjal Nautiyal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| | - Fahad Alam
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Arvind Agarwal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| |
Collapse
|
17
|
del Prado G, Pascual FJ, Castell P, Molina-Manso D, Mahillo I, Esteban J, Puértolas JA. Influence of carbon nanotubes structures embedded in UHMWPE on bacterial adherence. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1393684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gema del Prado
- Department of Clinical Microbiology, IIS-Fundación Jiménez-Díaz, UAM, Madrid, Spain
| | | | | | - Diana Molina-Manso
- Department of Clinical Microbiology, IIS-Fundación Jiménez-Díaz, UAM, Madrid, Spain
| | - Ignacio Mahillo
- Department of Clinical Microbiology, IIS-Fundación Jiménez-Díaz, UAM, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez-Díaz, UAM, Madrid, Spain
| | | |
Collapse
|
18
|
Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:387-396. [DOI: 10.1016/j.msec.2017.05.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
|
19
|
Zizzari VL, Zara S, Tetè G, Vinci R, Gherlone E, Cataldi A. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:392-402. [PMID: 27496576 DOI: 10.1016/j.oooo.2016.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
Abstract
Many bone substitutes have been proposed for bone regeneration, and researchers have focused on the interactions occurring between grafts and host tissue, as the biologic response of host tissue is related to the origin of the biomaterial. Bone substitutes used in oral and maxillofacial surgery could be categorized according to their biologic origin and source as autologous bone graft when obtained from the same individual receiving the graft; homologous bone graft, or allograft, when harvested from an individual other than the one receiving the graft; animal-derived heterologous bone graft, or xenograft, when derived from a species other than human; and alloplastic graft, made of bone substitute of synthetic origin. The aim of this review is to describe the most commonly used bone substitutes, according to their origin, and to focus on the biologic events that ultimately lead to the integration of a biomaterial with the host tissue.
Collapse
Affiliation(s)
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| | - Giulia Tetè
- Dental School, Vita-Salute University and Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raffaele Vinci
- Dental School, Vita-Salute University and Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | - Enrico Gherlone
- Dental School, Vita-Salute University and Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
20
|
Mullen CA, Vaughan TJ, Billiar KL, McNamara LM. The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior. Biophys J 2016; 108:1604-1612. [PMID: 25863052 DOI: 10.1016/j.bpj.2015.02.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that can optimize the equivalent stiffness experienced by a cell.
Collapse
Affiliation(s)
- Conleth A Mullen
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Ireland; National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland
| | - Ted J Vaughan
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Ireland
| | - Kristen L Billiar
- Department Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Laoise M McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Ireland; National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland.
| |
Collapse
|
21
|
Gopi D, Shinyjoy E, Karthika A, Nithiya S, Kavitha L, Rajeswari D, Tang T. Single walled carbon nanotubes reinforced mineralized hydroxyapatite composite coatings on titanium for improved biocompatible implant applications. RSC Adv 2015. [DOI: 10.1039/c5ra04382d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon nanotubes reinforced mineralized hydroxyapatite (CNT/M-HAP) composite coating on titanium by pulsed electrodeposition is a promising approach to produce bioimplants with better osseointegration capacity and improved mechanical property.
Collapse
Affiliation(s)
- D. Gopi
- Department of Chemistry
- Periyar University
- Salem 636011
- India
- Centre for Nanoscience and Nanotechnology
| | - E. Shinyjoy
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - A. Karthika
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - S. Nithiya
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - L. Kavitha
- Department of Physics
- School of Basic and Applied Sciences
- Central University of Tamilnadu
- Thiruvarur 610 101
- India
| | - D. Rajeswari
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 20011
| |
Collapse
|
22
|
Mehrali M, Moghaddam E, Seyed Shirazi SF, Baradaran S, Mehrali M, Latibari ST, Metselaar HSC, Kadri NA, Zandi K, Osman NAA. Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite. PLoS One 2014; 9:e106802. [PMID: 25229540 PMCID: PMC4167702 DOI: 10.1371/journal.pone.0106802] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Ehsan Moghaddam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malay, Kuala Lumpur, Malaysia
| | - Seyed Farid Seyed Shirazi
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Saeid Baradaran
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Mehrali
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara Tahan Latibari
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Kim DY, Han YH, Lee JH, Kang IK, Jang BK, Kim S. Characterization of multiwalled carbon nanotube-reinforced hydroxyapatite composites consolidated by spark plasma sintering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:768254. [PMID: 24724100 PMCID: PMC3960548 DOI: 10.1155/2014/768254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/18/2014] [Indexed: 12/03/2022]
Abstract
Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day.
Collapse
Affiliation(s)
- Duk-Yeon Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| | - Young-Hwan Han
- School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Engineering, Dong-A University, Busan 604-714, Republic of Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Byung-Koog Jang
- Advanced Ceramics Group, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Sukyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| |
Collapse
|
24
|
Xie Y, Li H, Zhang C, Gu X, Zheng X, Huang L. Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed Mater 2014; 9:025009. [DOI: 10.1088/1748-6041/9/2/025009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Boroujeni NM, Zhou H, Luchini TJ, Bhaduri SB. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4323-30. [DOI: 10.1016/j.msec.2013.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/24/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
|
26
|
Lobo AO, Siqueira IAWB, das Neves MF, Marciano FR, Corat EJ, Corat MAF. In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1723-1732. [PMID: 23609000 DOI: 10.1007/s10856-013-4929-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
An association between in vitro and in vivo studies has been demonstrated for the first time, using a novel nanohydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube (nHAp/VAMWCNT-O2) nanocomposites. Human osteoblast cell culture and bone defects were used to evaluate the in vitro extracellular matrix (ECM) calcification process and bone regeneration, respectively. The in vitro ECM calcification process of nHAp/VAMWCNT-O2 nanocomposites were investigated using alkaline phosphatase assay. The in vivo biomineralization studies were carried out on bone defects of C57BL/6/JUnib mice. Scanning electron microscopy, micro-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and X-ray difractometry analyses confirmed the presence of the nHAp crystals. nHAp/VAMWCNT-O2 nanocomposites induced in vitro calcification of the ECM of human osteoblast cells in culture after only 24 h. Bone regeneration with lamellar bone formation after 9 weeks was found in the in vivo studies. Our findings make these new nanocomposites very attractive for application in bone tissue regeneration.
Collapse
Affiliation(s)
- Anderson Oliveira Lobo
- Laboratory of Biomedical Nanotechnology (NANOBIO), Universidade do Vale do Paraiba (UNIVAP), Av. Shishima Hifumi 2911, Sao Jose dos Campos, SP, 12224-000, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1380-8. [DOI: 10.1016/j.msec.2012.12.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/08/2012] [Accepted: 12/04/2012] [Indexed: 11/24/2022]
|
28
|
Facca S, Lahiri D. Nanoreinforcement of hydroxyapatite coatings on titanium for osseointegration of orthopaedic implants. Comput Methods Biomech Biomed Engin 2012; 15 Suppl 1:10-1. [PMID: 23009403 DOI: 10.1080/10255842.2012.713597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S Facca
- aDepartment of Hand Surgery, Strasbourg University Hospitals, 10 Avenue Achille Baumann, 67403, Illkirch Cedex, France.
| | | |
Collapse
|
29
|
Lahiri D, Ghosh S, Agarwal A. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1727-1758. [DOI: 10.1016/j.msec.2012.05.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/12/2012] [Accepted: 05/10/2012] [Indexed: 02/07/2023]
|
30
|
Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem 2012; 13:2495-506. [PMID: 22467406 DOI: 10.1002/cphc.201200080] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 02/02/2023]
Abstract
Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.
Collapse
Affiliation(s)
- Kate Fox
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
31
|
Zhang B, Kwok CT. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2249-2259. [PMID: 21850513 DOI: 10.1007/s10856-011-4416-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/06/2011] [Indexed: 05/31/2023]
Abstract
In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO(2)/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO(2) (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7-10 μm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO(2) and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks' solution at 37°C). The HA/TiO(2)/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO(2)/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO(2) and CNT contents for eliminating micro-cracks and micro-pores.
Collapse
Affiliation(s)
- Bokai Zhang
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau, China
| | | |
Collapse
|
32
|
Lahiri D, Benaduce AP, Kos L, Agarwal A. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique. NANOTECHNOLOGY 2011; 22:355703. [PMID: 21817784 DOI: 10.1088/0957-4484/22/35/355703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Nano-scratches were performed on plasma sprayed hydroxyapatite (HA) and HA-CNT coatings to quantify the adhesion of the osteoblast. The presence of CNTs in HA coating promotes an increase in the adhesion of osteoblasts. The adhesion force and energy of an osteoblast on a HA-CNT surface are 17 ± 2 µN/cell and 78 ± 14 pJ/cell respectively, as compared to 11 ± 2 µN/cell and 45 ± 10 pJ/cell on a HA surface after 1 day of incubation. The adhesion force and energy of the osteoblasts increase on both the surfaces with culture periods of up to 5 days. This increase is more pronounced for osteoblasts cultured on HA-CNT. Staining of actin filaments revealed a higher spreading and attachment of osteoblasts on a surface containing CNTs. The affinity of CNTs to conjugate with integrin and other proteins is responsible for the enhanced attachment of osteoblasts. Our results suggest that the addition of CNTs to surfaces used in medical applications may be beneficial when stronger adhesion of osteoblasts is desired.
Collapse
Affiliation(s)
- Debrupa Lahiri
- Nanomechanics and Nanotribology Laboratory, Florida International University, Miami, FL 33174, USA
| | | | | | | |
Collapse
|
33
|
Yang L, Zhang L, Webster TJ. Carbon nanostructures for orthopedic medical applications. Nanomedicine (Lond) 2011; 6:1231-44. [DOI: 10.2217/nnm.11.107] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon nanostructures (including carbon nanofibers, nanostructured diamond, fullerene materials and so forth) possess extraordinary physiochemical, mechanical and electrical properties attractive to bioengineers and medical researchers. In the past decade, numerous developments towards the fabrication and biological studies of carbon nanostructures have provided opportunities to improve orthopedic applications. Therefore, the aim of this article is to provide an up-to-date review on carbon nanostructure advances in orthopedic research. Orthopedic medical device applications of carbon nanotubes/carbon nanofibers and nanostructured diamond (including particulate nanodiamond and nanocrystalline diamond coatings) are emphasized here along with other carbon nanostructures that have promising potential. In addition, widely used fabrication techniques for producing carbon nanostructures in both the laboratory and in industry are briefly introduced. In conclusion, carbon nanostructures have demonstrated tremendous promise for orthopedic medical device applications to date, and although some safety, reliability and durability issues related to the manufacturing and implantation of carbon nanomaterials remain, their future is bright.
Collapse
Affiliation(s)
- Lei Yang
- School of Engineering, Brown University, Providence, RI 02912, USA
- Institute for Molecular and Nanoscale Innovation (IMNI), Brown University, Providence, RI 02912, USA
| | - Lijuan Zhang
- Institute for Molecular and Nanoscale Innovation (IMNI), Brown University, Providence, RI 02912, USA
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Thomas J Webster
- Department of Orthopaedics, Brown University, Providence, RI 02912, USA
| |
Collapse
|