1
|
Cameron AP, Zeng B, Liu Y, Wang H, Soheilmoghaddam F, Cooper-White J, Zhao CX. Biophysical properties of hydrogels for mimicking tumor extracellular matrix. BIOMATERIALS ADVANCES 2022; 136:212782. [PMID: 35929332 DOI: 10.1016/j.bioadv.2022.212782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
The extracellular matrix (ECM) is an essential component of the tumor microenvironment. It plays a critical role in regulating cell-cell and cell-matrix interactions. However, there is lack of systematic and comparative studies on different widely-used ECM mimicking hydrogels and their properties, making the selection of suitable hydrogels for mimicking different in vivo conditions quite random. This study systematically evaluates the biophysical attributes of three widely used natural hydrogels (Matrigel, collagen gel and agarose gel) including complex modulus, loss tangent, diffusive permeability and pore size. A new and facile method was developed combining Critical Point Drying, Scanning Electron Microscopy imaging and a MATLAB image processing program (CSM method) for the characterization of hydrogel microstructures. This CSM method allows accurate measurement of the hydrogel pore size down to nanometer resolution. Furthermore, a microfluidic device was implemented to measure the hydrogel permeability (Pd) as a function of particle size and gel concentration. Among the three gels, collagen gel has the lowest complex modulus, medium pore size, and the highest loss tangent. Agarose gel exhibits the highest complex modulus, the lowest loss tangent and the smallest pore size. Collagen gel and Matrigel produced complex moduli close to that estimated for cancer ECM. The Pd of these hydrogels decreases significantly with the increase of particle size. By assessing different hydrogels' biophysical characteristics, this study provides valuable insights for tailoring their properties for various three-dimensional cancer models.
Collapse
Affiliation(s)
- Anna P Cameron
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haofei Wang
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Farhad Soheilmoghaddam
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Justin Cooper-White
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Measurement of the Adipose Stem Cells Cell Sheets Transmittance. Bioengineering (Basel) 2021; 8:bioengineering8070093. [PMID: 34356200 PMCID: PMC8301134 DOI: 10.3390/bioengineering8070093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
In the field of cell therapy, the interest in cell sheet technology is increasing. To determine the cell sheet harvesting time requires experience and practice, and different factors could change the harvesting time (variability among donors and culture media, between cell culture dishes, initial cell seeding density). We have developed a device that can measure the transmittance of the multilayer cell sheets, using a light emitting diode and a light detector, to estimate the harvesting time. The transmittance of the adipose stromal cells cell sheets (ASCCS) was measured every other day as soon as the cells were confluent, up to 12 days. The ASCCS, from three different initial seeding densities, were harvested at 8, 10, and 12 days after seeding. Real-time PCR and immunostaining confirmed the expression of specific cell markers (CD29, CD73, CD90, CD105, HLA-A, HLA-DR), but less than the isolated adipose stromal cells. The number of cells per cell sheets, the average thickness per cell sheet, and the corresponding transmittance showed no correlation. Decrease of the transmittance seems to be correlated with the cell sheet maturation. For the first time, we are reporting the success development of a device to estimate ASCCS harvesting time based on their transmittance.
Collapse
|
3
|
Severn CE, Eissa AM, Langford CR, Parker A, Walker M, Dobbe JGG, Streekstra GJ, Cameron NR, Toye AM. Ex vivo culture of adult CD34 + stem cells using functional highly porous polymer scaffolds to establish biomimicry of the bone marrow niche. Biomaterials 2019; 225:119533. [PMID: 31610389 DOI: 10.1016/j.biomaterials.2019.119533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Haematopoiesis, the process of blood production, occurs from a tiny contingent of haematopoietic stem cells (HSC) in highly specialised three-dimensional niches located within the bone marrow. When haematopoiesis is replicated using in vitro two-dimensional culture, HSCs rapidly differentiate, limiting self-renewal. Emulsion-templated highly porous polyHIPE foam scaffolds were chosen to mimic the honeycomb architecture of human bone. The unmodified polyHIPE material supports haematopoietic stem and progenitor cell (HSPC) culture, with successful culture of erythroid progenitors and neutrophils within the scaffolds. Using erythroid culture methodology, the CD34+ population was maintained for 28 days with continual release of erythroid progenitors. These cells are shown to spontaneously repopulate the scaffolds, and the accumulated egress can be expanded and grown at large scale to reticulocytes. We next show that the polyHIPE scaffolds can be successfully functionalised using activated BM(PEG)2 (1,8-bismaleimido-diethyleneglycol) and then a Jagged-1 peptide attached in an attempt to facilitate notch signalling. Although Jagged-1 peptide had no detectable effect, the BM(PEG)2 alone significantly increased cell egress when compared to controls, without depleting the scaffold population. This work highlights polyHIPE as a novel functionalisable material for mimicking the bone marrow, and also that PEG can influence HSPC behaviour within scaffolds.
Collapse
Affiliation(s)
- C E Severn
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - A M Eissa
- Department of Polymers, Chemical Industries Research Division, National Research Centre, El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt; School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - C R Langford
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A Parker
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - M Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - J G G Dobbe
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - N R Cameron
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK.
| |
Collapse
|
4
|
Correia CR, Santos TC, Pirraco RP, Cerqueira MT, Marques AP, Reis RL, Mano JF. In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomater 2017; 53:483-494. [PMID: 28179159 DOI: 10.1016/j.actbio.2017.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Capsules coated with polyelectrolytes and co-encapsulating adipose stem (ASCs) and endothelial (ECs) cells with surface modified microparticles are developed. Microparticles and cells are freely dispersed in a liquified core, responsible to maximize the diffusion of essential molecules and allowing the geometrical freedom for the autonomous three-dimensional (3D) organization of cells. While the membrane wraps all the instructive cargo elements within a single structure, the microparticles provide a solid 3D substrate for the encapsulated cells. Our hypothesis is that inside this isolated biomimetic 3D environment, ECs would lead ASCs to differentiate into the osteogenic lineage to ultimately generate a mineralized tissue in vivo. For that, capsules encapsulating only ASCs (MONO capsules) or co-cultured with ECs (CO capsules) are subcutaneously implanted in nude mice up to 6weeks. Capsules implanted immediately after production or after 21days of in vitro osteogenic stimulation are tested. The most valuable outcome of the present study is the mineralized tissue in CO capsules without in vitro pre-differentiation, with similar levels compared to the pre-stimulated capsules in vitro. We believe that the proposed bioencapsulation strategy is a potent self-regulated system, which might find great applicability in bone tissue engineering. STATEMENT OF SIGNIFICANCE The diffusion efficiency of essential molecules for cell survival is a main issue in cell encapsulation. Former studies reported the superior biological outcome of encapsulated cells within liquified systems. However, most cells used in TE are anchorage-dependent, requiring a solid substrate to perform main cellular processes. We hypothesized that liquified capsules encapsulating microparticles are a promising attempt. Inspired by the multiphenotypic cellular environment of bone, we combine the concept of liquified capsules with co-cultures of stem and endothelial cells. After implantation, results show that co-cultured capsules without in vitro stimulation were able to form a mineralized tissue in vivo. We believe that the present ready-to-use TE strategy requiring minimum in vitro manipulation will find great applicability in bone tissue engineering.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Visualization of Mesenchymal Stromal Cells in 2Dand 3D-Cultures by Scanning Electron Microscopy with Lanthanide Contrasting. Bull Exp Biol Med 2017; 162:558-562. [PMID: 28239796 DOI: 10.1007/s10517-017-3659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 10/20/2022]
Abstract
Mesenchymal stromal cells from deciduous teeth in 2D- and 3D-cultures on culture plastic, silicate glass, porous polystyrene, and experimental polylactoglycolide matrices were visualized by scanning electron microscopy with lanthanide contrasting. Supravital staining of cell cultures with a lanthanide-based dye (neodymium chloride) preserved normal cell morphology and allowed assessment of the matrix properties of the carriers. The developed approach can be used for the development of biomaterials for tissue engineering.
Collapse
|
6
|
Poels J, Abou-Ghannam G, Decamps A, Leyman M, Rieux AD, Wyns C. Transplantation of testicular tissue in alginate hydrogel loaded with VEGF nanoparticles improves spermatogonial recovery. J Control Release 2016; 234:79-89. [DOI: 10.1016/j.jconrel.2016.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/24/2022]
|
7
|
Arnal-Pastor M, Martínez-Ramos C, Vallés-Lluch A, Pradas MM. Influence of scaffold morphology on co-cultures of human endothelial and adipose tissue-derived stem cells. J Biomed Mater Res A 2016; 104:1523-33. [DOI: 10.1002/jbm.a.35682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- M. Arnal-Pastor
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
| | - C. Martínez-Ramos
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
| | - A. Vallés-Lluch
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
| | - M. Monleón Pradas
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; C. de Vera s/n Valencia 46022 Spain
- Networking Research Center on Bioengineering; Biomaterials and Nanomedicine; Valencia Spain
| |
Collapse
|
8
|
Correia CR, Pirraco RP, Cerqueira MT, Marques AP, Reis RL, Mano JF. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Sci Rep 2016; 6:21883. [PMID: 26905619 PMCID: PMC4764811 DOI: 10.1038/srep21883] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 01/26/2023] Open
Abstract
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the "stem cell niche", the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Mesenchymal stromal cell therapy: different sources exhibit different immunobiological properties. Transplantation 2015; 99:1113-8. [PMID: 26035274 DOI: 10.1097/tp.0000000000000734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
A paper-based scaffold for enhanced osteogenic differentiation of equine adipose-derived stem cells. Biotechnol Lett 2015; 37:2321-31. [DOI: 10.1007/s10529-015-1898-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/25/2015] [Indexed: 01/14/2023]
|
11
|
Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh. Stem Cells Int 2015; 2015:350718. [PMID: 26106426 PMCID: PMC4464689 DOI: 10.1155/2015/350718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 12/26/2022] Open
Abstract
Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34- when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.
Collapse
|
12
|
Chung E, Rytlewski JA, Merchant AG, Dhada KS, Lewis EW, Suggs LJ. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomater 2015; 17:78-88. [PMID: 25600400 DOI: 10.1016/j.actbio.2015.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/07/2015] [Accepted: 01/11/2015] [Indexed: 12/27/2022]
Abstract
Engineered three-dimensional biomaterials are known to affect the regenerative capacity of stem cells. The extent to which these materials can modify cellular activities is still poorly understood, particularly for adipose-derived stem cells (ASCs). This study evaluates PEGylated fibrin (P-fibrin) gels as an ASC-carrying scaffold for encouraging local angiogenesis by comparing with two commonly used hydrogels (i.e., collagen and fibrin) in the tissue-engineering field. Human ASCs in P-fibrin were compared to cultures in collagen and fibrin under basic growth media without any additional soluble factors. ASCs proliferated similarly in all gel scaffolds but showed significantly elongated morphologies in the P-fibrin gels relative to other gels. P-fibrin elicited higher von Willebrand factor expression in ASCs than either collagen or fibrin while cells in collagen expressed more smooth muscle alpha actin than in other gels. VEGF was secreted more at 7 days in fibrin and P-fibrin than in collagen and several other angiogenic and immunomodulatory cytokines were similarly enhanced. Fibrin-based matrices appear to activate angiogenic signaling in ASCs while P-fibrin matrices are uniquely able to also drive a vessel-like ASC phenotype. Collectively, these results suggest that P-fibrin promotes the angiogenic potential of ASC-based therapeutic applications.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA.
| | - Julie A Rytlewski
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Arjun G Merchant
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Kabir S Dhada
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Evan W Lewis
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA.
| |
Collapse
|
13
|
Enhanced invasion of metastatic cancer cells via extracellular matrix interface. PLoS One 2015; 10:e0118058. [PMID: 25706718 PMCID: PMC4338181 DOI: 10.1371/journal.pone.0118058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/03/2015] [Indexed: 11/19/2022] Open
Abstract
Cancer cell invasion is a major component of metastasis and is responsible for extensive cell diffusion into and major destruction of tissues. Cells exhibit complex invasion modes, including a variety of collective behaviors. This phenomenon results in the structural heterogeneity of the extracellular matrix (ECM) in tissues. Here, we systematically investigated the environmental heterogeneity facilitating tumor cell invasion via a combination of in vitro cell migration experiments and computer simulations. Specifically, we constructed an ECM microenvironment in a microfabricated biochip and successfully created a three-dimensional (3D) funnel-like matrigel interface inside. Scanning electron microscopy demonstrated that the interface was at the interior defects of the nano-scale molecular anisotropic orientation and the localized structural density variations in the matrigel. Our results, particularly the correlation of the collective migration pattern with the geometric features of the funnel-like interface, indicate that this heterogeneous in vitro ECM structure strongly guides and promotes aggressive cell invasion in the rigid matrigel space. A cellular automaton model was proposed based on our experimental observations, and the associated quantitative analysis indicated that cell invasion was initiated and controlled by several mechanisms, including microenvironment heterogeneity, long-range cell-cell homotype and gradient-driven directional cellular migration. Our work shows the feasibility of constructing a complex and heterogeneous in vitro 3D ECM microenvironment that mimics the in vivo environment. Moreover, our results indicate that ECM heterogeneity is essential in controlling collective cell invasive behaviors and therefore determining metastasis efficiency.
Collapse
|
14
|
Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:903-11. [PMID: 25691933 PMCID: PMC4328100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/21/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived stem cells (ASCs) are good candidate for use in stem cell-based clinical therapies. They could be cultured and differentiated into several lineages such as cartilage, bone, muscle, neuronal cells, etc. MATERIALS AND METHODS In the present study, human ASCs were cultured on random and aligned polycaprolactone (PCL) nanofibers. The capacity of random and aligned PCL nanofibrous scaffolds to support stem cells for the proliferation was studied by MTT assay. The cardiomyocyte phenotype was first identified by morphological studies and Immunocytochemistry (ICC) staining, and then confirmed with evaluation of specific cardiac related gene markers expression by real-time RT-PCR. RESULTS The proliferation rate of ASCs on aligned nanofibrous PCL was significantly higher than random nanofibrous PCL. ICC and morphological studies results confirmed cardiomyocyte differentiation of ASCs on the nanofibrous scaffolds. In addition, the expression rate of cardiovascular related gene markers such as GATA-4, α-MHC and Myo-D was significantly increased in aligned nanofibrous PCL compared with random nanofibrous PCL. CONCLUSION Our results show that the aligned PCL nanofibers are suitable physical properties as polymeric artificial scaffold in cardiovascular tissue engineering application.
Collapse
|
15
|
Proliferation of ASC-derived endothelial cells in a 3D electrospun mesh: impact of bone-biomimetic nanocomposite and co-culture with ASC-derived osteoblasts. Injury 2014; 45:974-80. [PMID: 24650943 DOI: 10.1016/j.injury.2014.02.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Fractures with a critical size bone defect are associated with high rates of delayed- and non-union. The treatment of such complications remains a serious issue in orthopaedic surgery. Adipose derived stem cells (ASCs) combined with biomimetic materials can potentially be used to increase fracture healing. Nevertheless, a number of requirements have to be fulfilled; in particular, the insufficient vascularisation of the bone constructs. Here, the objectives were to study the impact of ASC-derived osteoblasts on ASC-derived endothelial cells in a 3D co-culture and the effect of 40wt% of amorphous calcium phosphate nanoparticles on the proliferation and differentiation of ASC-derived endothelial cells when present in PLGA. MATERIALS AND METHODS Five primary ASC lines were differentiated towards osteoblasts (OBs) and endothelial cells (ECs) and two of them were chosen based on quantitative PCR results. Either a mono-culture of ASC-derived EC or a co-culture of ASC-derived EC with ASC-derived OB (1:1) was seeded on an electrospun nanocomposite of poly-(lactic-co-glycolic acid) and amorphous calcium phosphate nanoparticles (PLGA/a-CaP; reference: PLGA). The proliferation behaviour was determined histomorphometrically in different zones and the expression of von Willebrand Factor (vWF) was quantified. RESULTS Independently of the fat source (biologic variability), ASC-derived osteoblasts decelerated the proliferation behaviour of ASC-derived endothelial cells in the co-culture compared to the mono-culture. However, expression of vWF was clearly stronger in the co-culture, indicating further differentiation of the ASC-derived EC into the EC lineage. Moreover, the presence of a-CaP nanoparticles in the scaffold slowed the proliferation behaviour of the co-culture cells, too, going along with a further differentiation of the ASC-derived OB, when compared to pure PLGA scaffolds. CONCLUSIONS This study revealed significant findings for bone tissue-engineering. Co-cultures of ASC-derived EC and ASC-derived OB stimulate each other's further differentiation. A nanocomposite with a-CaP nanoparticles offers higher mechanical stability, bioactivity and osteoconductivity compared to mere PLGA and can easily be seeded with pre-differentiated EC and OB.
Collapse
|
16
|
Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model. Ann Biomed Eng 2014; 42:1074-84. [PMID: 24435656 DOI: 10.1007/s10439-014-0971-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
A primary impediment to cardiac tissue engineering lies in the inability to adequately vascularize the constructs to optimize survival upon implantation. During normal angiogenesis, endothelial cells (ECs) require a support cell to form mature patent lumens and it has been demonstrated that pericytes, vascular smooth muscle cells and mesenchymal stem cells (MSCs) are all able to support the formation of mature vessels. In the heart, cardiac fibroblasts (CFs) provide important electrical and mechanical functions, but to date have not been sufficiently studied for their role in angiogenesis. To study CFs role in angiogenesis, we co-cultured different concentrations of various cell types in fibrin hemispheres with appropriate combinations of their specific media, to determine the optimal conditions for EC growth and sprout formation through DNA analysis, flow cytometry and immunohistology. ECs proliferated best when co-cultured with CFs and analysis of immunohistological images demonstrated that ECs formed the longest and most numerous sprouts with CFs as compared to MSCs. However, ECs were able to produce more multicellular sprouts when in culture with the MSCs. Moreover, these effects were dependent on the ratio of support cell to EC in co-culture. Overall, CFs provide a good support system for EC proliferation and sprout formation; however, MSCs allow for more multicellular sprouts, which is more indicative of the in vivo process.
Collapse
|
17
|
Hayward AS, Eissa AM, Maltman D, Sano N, Przyborski SA, Cameron NR. Galactose-functionalized polyHIPE scaffolds for use in routine three dimensional culture of mammalian hepatocytes. Biomacromolecules 2013; 14:4271-7. [PMID: 24180291 PMCID: PMC3859181 DOI: 10.1021/bm401145x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/31/2013] [Indexed: 01/12/2023]
Abstract
Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2'-aminoethyl-β-D-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7-9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on the galactose-functionalized material, suggesting that the surface carbohydrates are accessible and selective to cells entering the scaffold. This porous polymer scaffold could, therefore, have important application as a 3D scaffold that offers enhanced hepatocyte adhesion and functionality.
Collapse
Affiliation(s)
- Adam S. Hayward
- School
of Biological and Biomedical Science, Durham
University, South Road, Durham DH13LE, United Kingdom
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, United Kingdom
| | - Ahmed M. Eissa
- Department of Polymers, Chemical Industries
Research Division, National Research Centre
(NRC), Dokki, Cairo, Egypt
- Department
of Chemistry, Durham University, South Road, Durham DH13LE, United
Kingdom
| | - Daniel
J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, United Kingdom
| | - Naoko Sano
- NEXUS, School of Mechanical and Systems Engineering, Newcastle University,
Stephenson Building, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - Stefan A. Przyborski
- School
of Biological and Biomedical Science, Durham
University, South Road, Durham DH13LE, United Kingdom
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, United Kingdom
| | - Neil R. Cameron
- Department
of Chemistry, Durham University, South Road, Durham DH13LE, United
Kingdom
| |
Collapse
|
18
|
Zamperone A, Pietronave S, Merlin S, Colangelo D, Ranaldo G, Medico E, Di Scipio F, Berta GN, Follenzi A, Prat M. Isolation and characterization of a spontaneously immortalized multipotent mesenchymal cell line derived from mouse subcutaneous adipose tissue. Stem Cells Dev 2013; 22:2873-84. [PMID: 23777308 DOI: 10.1089/scd.2012.0718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emerging field of tissue engineering and regenerative medicine is a multidisciplinary science that is based on the combination of a reliable source of stem cells, biomaterial scaffolds, and cytokine growth factors. Adult mesenchymal stem cells are considered important cells for applications in this field, and adipose tissue has revealed to be an excellent source of them. Indeed, adipose-derived stem cells (ASCs) can be easily isolated from the stromal vascular fraction (SVF) of adipose tissue. During the isolation and propagation of murine ASCs, we observed the appearance of a spontaneously immortalized cell clone, named m17.ASC. This clone has been propagated for more than 180 passages and stably expresses a variety of stemness markers, such as Sca-1, c-kit/CD117, CD44, CD106, islet-1, nestin, and nucleostemin. Furthermore, these cells can be induced to differentiate toward osteogenic, chondrogenic, adipogenic, and cardiogenic phenotypes. m17.ASC clone displays a normal karyotype and stable telomeres; it neither proliferates when plated in soft agar nor gives rise to tumors when injected subcutaneously in NOD/SCID-γ (null) mice. The analysis of gene expression highlighted transcriptional traits of SVF cells. m17.ASCs were genetically modified by lentiviral vectors carrying green fluorescent protein (GFP) as a marker transgene and efficiently engrafted in the liver, when injected in the spleen of NOD/SCID-γ (null) monocrotaline-treated mice. These results suggest that this non-tumorigenic spontaneously immortalized ASC line may represent a useful tool (cell model) for studying the differentiation mechanisms involved in tissue repair as well as a model for pharmacological/toxicological studies.
Collapse
Affiliation(s)
- Andrea Zamperone
- 1 Dipartimento di Scienze della Salute, Università del Piemonte Orientale , Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Handel M, Hammer TR, Hoefer D. Adipogenic differentiation of scaffold-bound human adipose tissue-derived stem cells (hASC) for soft tissue engineering. Biomed Mater 2012; 7:054107. [PMID: 22972360 DOI: 10.1088/1748-6041/7/5/054107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adipose tissue engineering, instead of tissue substitution, often uses autologous adipose tissue-derived stem cells (hASC). These cells are known to improve graft integration and to support neovascularization of scaffolds when seeded onto biomaterials. In this study we thought to engineer adipose tissue using scaffold-bound hASC, since they can be differentiated into the adipocyte cell lineage and used for soft tissue regeneration. We show here by microscopy and gene expression of the peroxysome proliferator-activated receptor gene (PPARγ2) that hASC growing on polypropylene fibrous scaffolds as well as on three-dimensional nonwoven scaffolds can be turned into adipose tissue within 19 days. Freshly isolated hASC displayed a higher differentiation potential than hASC cultured for eight passages. In addition, we proved a modified alginate microcapsule to directly induce adipogenic differentiation of incorporated hASC. The results may help to improve long-term success of adipose tissue regeneration, especially for large-scale soft tissue defects, and support the development of cell-scaffold combinations which can be shaped individually and directly induce the adipogenic differentiation of incorporated hASC at the site of implantation.
Collapse
Affiliation(s)
- M Handel
- Hygiene, Environment and Medicine, Hohenstein Institutes, Schloss Hohenstein, 74357 Boennigheim, Germany
| | | | | |
Collapse
|
20
|
Abstract
This review provides a thorough and clear discussion on the outcomes of stem cells in treating chronic wounds. With recent technological developments that now allow isolation and culture of stem cells, researchers are able to perform vigorous studies on somatic or adult stem cells. Human and animal stem cell studies are discussed with a focus on the basic process of stem cells in wound healing and the authors' first-hand clinical experience with stem cells used for chronic wound healing.
Collapse
|
21
|
|