1
|
Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehreen Elahi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Rabia Mushtaq
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Department of Zoology, Government College University, Lahore, Pakistan
- Sericulture Wing, Forest Department, Lahore, Pakistan
| |
Collapse
|
2
|
Xu X, Li Z, Zhao X, Keen L, Kong X. Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen Biomater 2016; 3:187-95. [PMID: 27252888 PMCID: PMC4881614 DOI: 10.1093/rb/rbw010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
Despite the enormous therapeutic potential of siRNA as a treatment strategy, the delivery is still a problem due to unfavorable biodistribution profiles and poor intracellular bioavailability. Calcium phosphate (CaP) co-precipitate has been used for nearly 40 years for in vitro transfection due to its non-toxic nature and simplicity of preparation. The surface charge of CaP will be tuned into positive by surface modification, which is important for siRNA loading and crossing cell membrane without enzymatic degradation. The new siRNA carrier system will also promote the siRNA escape from lysosome to achieve siRNA sustained delivery and high-efficiency silence. In this review, we focus on the current research activity in the development of CaP nanoparticles for siRNA delivery. These nanoparticles are mainly classified into lipid coated, polymer coated and various other types for discussion.
Collapse
Affiliation(s)
- Xiaochun Xu
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zehao Li
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xueqin Zhao
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lawrence Keen
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Chen C, Han H, Yang W, Ren X, Kong X. Polyethyleneimine-modified calcium carbonate nanoparticles for p53 gene delivery. Regen Biomater 2016; 3:57-63. [PMID: 26816656 PMCID: PMC4723273 DOI: 10.1093/rb/rbv029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
In this study, calcium carbonate (CaCO3) nanoparticles with spherical structure were regulated by arginine and successfully synthesized via a facile co-precipitation method. The average particle size of as-prepared CaCO3 was about 900 nm. The properties of nanostructured CaCO3 particles were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and size distribution. After modified with polyethyleneimine (PEI), the ability of PEI-CaCO3 nanoparticles to carry GFP-marked p53 gene (pEGFP-C1-p53) into cancer cells to express P53 protein were studied. Meanwhile, the cytotoxicity, transfection efficiency, cells growth inhibition and the ability to induce apoptosis by expressed P53 protein were conducted to evaluate the performances of PEI-CaCO3 nanoparticles. The results show that prepared PEI-CaCO3 nanoparticles had good biocompatibility and low cytotoxicity in a certain concentration range. PEI-CaCO3 effectively transfected pEGFP-C1 gene into epithelial-like cancer cells. And with the expression of GFP-P53 fusion protein, pEGFP-C1-p53-gene-loaded PEI-CaCO3 particles significantly reduced the proliferation of cancer cells. These findings indicate that our PEI-modified CaCO3 nanoparticles are potential to be successfully used as carriers for gene therapy.
Collapse
Affiliation(s)
- Cen Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huafeng Han
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Yang
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyuan Ren
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Kong
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|