1
|
Kong Y, Zhang X, Ma X, Wu L, Chen D, Su B, Liu D, Wang X. Silicon-substituted calcium phosphate promotes osteogenic-angiogenic coupling by activating the TLR4/PI3K/AKT signaling axis. J Biomater Appl 2022; 37:459-473. [PMID: 35623361 DOI: 10.1177/08853282221105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silicon-substituted calcium phosphate (Si-CaP) is a promising bioactive material for bone tissue engineering. The mechanism of Si-CaP regulates osteogenic-angiogenic coupling during bone regeneration has not been fully elucidated. In this study, we screened the targets of Si-CaP and osteogenic-angiogenic coupling. 83 common genes were regarded as key targets for Si-CaP regulation of the osteogenic-angiogenic coupling. Then, we performed protein-protein interaction analysis, GO and KEGG enrichment analysis of these 83 targets to further predict their molecular mechanism. Our results showed that Si-CaP treatment could regulate the osteogenic-angiogenic coupling by up-regulating the expression of Toll-like receptor 4 (TLR4), and the phosphorylation of AKT which in turn activating the PI3K/AKT signaling pathway, promoting the expression of RUNX2, OPN, VEGF. In addition, we also found that TLR4 siRNA treatment could block the PI3K/AKT signaling pathway, while inhibiting the promoting effect of Si-CaP. However, although LY294002 can achieve the same inhibitory effect as TLR4 siRNA by blocking the PI3K/AKT signaling pathway, it could not affect the expression of TLR4. This indicates that TLR4 is an upstream activator of PI3K/AKT signaling pathway. These results are highly consistent with the prediction of bioinformatics. In conclusion, we have elucidated the role of TLR4/PI3K/AKT signaling axis in Si-CaP mediated osteogenic-angiogenic coupling for the first time. This study provides new data onto the regulatory role and molecular mechanism of Si-CaP in the process of osteogenic-angiogenic coupling, which strongly supports its wide application for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanhang Kong
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xin Zhang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Xinnan Ma
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Three authors contributed equally to this work as co-first author
| | - Leilei Wu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Chen
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Su
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daqian Liu
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintao Wang
- 34707Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Trubitsyn MA, Hung HV, Furda LV, Hong NTT. Effect of Molar Ratios in the Crystallochemical Structure of Biomimetic Nanostructured Hydroxyapatite on the Characteristics of the Product. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621050211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Lv Z, Muheremu A, Bai X, Zou X, Lin T, Chen B. PTH(1‑34) activates the migration and adhesion of BMSCs through the rictor/mTORC2 pathway. Int J Mol Med 2020; 46:2089-2101. [PMID: 33125102 PMCID: PMC7595657 DOI: 10.3892/ijmm.2020.4754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
The ability of intermittent parathyroid hormone (1-34) [PTH(1-34)] treatment to enhance bone-implant osseo-integration was recently demonstrated in vivo. However, the mechanisms through which PTH (1-34) regulates bone marrow-derived stromal cells (BMSCs) remain unclear. The present study thus aimed to investigate the effects of PTH(1-34) on the migration and adhesion of, and rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling in BMSCs. In the present study, BMSCs were isolated from Sprague-Dawley rats treated with various concentrations of PTH(1-34) for different periods of time. PTH(1-34) treatment was performed with or without an mTORC1 inhibitor (20 nM rapamycin) and mTORC1/2 inhibitor (10 µM PP242). Cell migration was assessed by Transwell cell migration assays and wound healing assays. Cell adhesion and related mRNA expression were investigated through adhesion assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. The protein expression of chemokine receptors (CXCR4 and CCR2) and adhesion factors [intercellular adhesion molecule 1 (ICAM-1), fibronectin and integrin β1] was examined by western blot analysis. The results revealed that various concentrations (1, 10, 20, 50 and 100 nM) of PTH(1-34) significantly increased the migration and adhesion of BMSCs, as well as the expression of CXCR4, CCR2, ICAM-1, fibronectin and integrin β1. In addition, the p-Akt and p-S6 levels were also upregulated by PTH(1-34). BMSCs subjected to mTORC1/2 signaling pathway inhibition or rictor silencing exhibited a markedly reduced PTH-induced migration and adhesion, while no such effect was observed for the BMSCs subjected to mTORC1 pathway inhibition or raptor silencing. These results indicate that PTH(1-34) promotes BMSC migration and adhesion through rictor/mTORC2 signaling in vitro. Taken together, the results of the present study reveal an important mechanism for the therapeutic effects of PTH(1-34) on bone-implant osseointegration and suggest a potential treatment strategy based on the effect of PTH(1-34) on BMSCs.
Collapse
Affiliation(s)
- Zhong Lv
- Department of Orthopedics, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 510080, P.R. China
| | | | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Bailing Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
4
|
Cui L, Xiang S, Chen D, Fu R, Zhang X, Chen J, Wang X. A novel tissue-engineered bone graft composed of silicon-substituted calcium phosphate, autogenous fine particulate bone powder and BMSCs promotes posterolateral spinal fusion in rabbits. J Orthop Translat 2020; 26:151-161. [PMID: 33437634 PMCID: PMC7773983 DOI: 10.1016/j.jot.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/15/2022] Open
Abstract
Background Autogenous bone graft is the gold standard bone grafting substrate available in spinal fusion because of its osteoconductive, osteogenic, and osteoinductive properties. However, several shortcomings including bleeding, infection, chronic pain, and nerve injury are known to be associated with the procedure. Bone tissue engineering has emerged as an alternative therapeutic strategy for bone grafts. New materials have been developed and tested that can substitute for the autogenous bone grafts used in the spinal fusion. The purpose of this study is to evaluate the role of a novel tissue-engineered bone graft with silicon-substituted calcium phosphate (Si-CaP), autogenous fine particulate bone powder (AFPBP), and bone marrow mesenchymal stem cells (BMSCs) using a rabbit posterolateral lumbar fusion model based on bone tissue engineering principles. The application of this graft can represent a novel choice for autogenous bone to reduce the amount of autogenous bone and promote spinal fusion. Methods BMSCs from New Zealand white rabbits were isolated and cultured in vitro. Then, BMSCs were marked by the cell tracker chloromethyl-benzamidodialkylcarbocyanine (CM-Dil). A total of 96 New Zealand White rabbits were randomly divided into four groups: (a) AFPBP, (b) Si-CaP, (c) Si-CaP/AFPBP, (d) Si-CaP/AFPBP/BMSCs.The rabbits underwent bilateral posterolateral spine arthrodesis of the L5-L6 intertransverse processes using different grafts. Spinal fusion and bone formation were evaluated at 4, 8, and 12 weeks after surgery by manual palpation, radiology, micro-computed tomography (micro-CT), histology, and scanning electronic microscopy (SEM). Results The rate of fusion by manual palpation was higher in the Si-CaP/AFPBP/BMSCs group than the other groups at 8 weeks. The fusion rates in the Si-CaP/AFPBP/BMSCs and the AFPBP groups both reached 100%, which was higher than the Si-CaP/AFPBP group (62.5%) (P > 0.05) and Si-CaP group (37.5%) (P < 0.05) at 12 weeks. New bone formation was observed in all groups after implantation by radiology and micro-CT. The radiographic and CT scores increased in all groups from 4 to 12 weeks, indicating a time-dependent osteogenetic process. The Si-CaP/AFPBP/BMSCs group showed a larger amount of newly formed bone than the Si-CaP/AFPBP and Si-CaP groups at 12 weeks. Bone formation in the Si-CaP/AFPBP/BMSCs group was similar to the AFPBP group. Histology showed that new bone formation continued and increased along with the degradation and absorption of Si-CaP and AFPBP from 4 to 12 weeks in the Si-CaP, Si-CaP/AFPBP, and Si-CaP/AFPBP/BMSCs groups. At 4 weeks, a higher proportion of bone was detected in the AFPBP group (23.49%) compared with the Si-CaP/AFPBP/BMSCs group (14.66%, P < 0.05). In the Si-CaP/AFPBP/BMSCs group at 8 weeks, the area percentage of new bone formation was 28.56%, which was less than the AFPBP group (33.21%, P < 0.05). No difference in bone volume was observed between the Si-CaP/AFPBP/BMSCs group (44.39%) and AFPBP group (45.06%) at 12 weeks (P > 0.05). At 12 weeks, new trabecular were visible in the Si-CaP/AFPBP/BMSCs group by SEM. CM-Dil-positive cells were observed at all stages. Compared with histological images, BMSCs participate in various stages of osteogenesis by transforming into osteoblasts, chondrocytes, and osteocytes. Conclusion This study demonstrated for the first time that Si-CaP/AFPBP/BMSCs is a novel tissue-engineered bone graft with excellent bioactivity, biocompatibility, and biodegradability. The graft could reduce the amount of autogenous bone and promote spinal fusion in a rabbit posterolateral lumbar fusion model, representing a novel alternative to autogenous bone. The Translational potential of this article The translational potential of this article lies in that this graft will be a novel spinal fusion graft with great potential for clinical applications.
Collapse
Affiliation(s)
- LiHuang Cui
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ShouYang Xiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - DeChun Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JingTao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - XinTao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Mohiuddin OA, Motherwell JM, Rogers E, Bratton MR, Zhang Q, Wang G, Bunnell B, Hayes DJ, Gimble JM. Characterization and Proteomic Analysis of Decellularized Adipose Tissue Hydrogels Derived from Lean and Overweight/Obese Human Donors. ACTA ACUST UNITED AC 2020; 4:e2000124. [PMID: 32914579 DOI: 10.1002/adbi.202000124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Indexed: 12/19/2022]
Abstract
While decellularized adipose tissue (DAT) has potential as an "off-the-shelf" biomaterial product for regenerative medicine, it remains to be determined if donor-source body mass index (BMI) impacts the functionality of DAT. This study set out to comparatively characterize lean versus overweight/obese-donor derived DAT hydrogel based on proteome and to analyze their respective effects on adipose stromal/stem cell (ASC) viability, and differentiation in vitro. Decellularized adipose tissue from lean (lDAT) and overweight/obese (oDAT) donors is produced and characterized. Variability in the fibril microstructures is found, with dense fibrotic fiber clusters and large pore area uniquely present in the oDAT samples. Proteomic analysis reveals that lDAT contains a greater proportion of enriched extracellular proteins and a smaller proportion of enriched intracellular proteins relative to oDAT. Biocompatibility studies show that ASCs cultured in lDAT and oDAT hydrogels remain viable. The adipogenic and osteogenic differentiation capability of ASCs seeded in lDAT and oDAT hydrogels is confirmed by an upregulation in marker gene expression and phenotypic analysis. In conclusion, this study establishes that DAT hydrogels derived from lean and overweight/obese adipose donors present similar physicochemical profiles with some distinctive features while comparably supporting the viability and adipogenic differentiation of ASCs in vitro.
Collapse
Affiliation(s)
- Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jessica M Motherwell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emma Rogers
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70112, USA
| | | | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, 70148, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To provide information on characteristics and use of various ceramics in spine fusion and future directions. RECENT FINDINGS In most recent years, focus has been shifted to the use of ceramics in minimally invasive surgeries or implementation of nanostructured surface modification features to promote osteoinductive properties. In addition, effort has been placed on the development of bioactive synthetics. Core characteristic of bioactive synthetics is that they undergo change to simulate a beneficial response within the bone. This change is based on chemical reaction and various chemical elements present in the bioactive ceramics. Recently, a synthetic 15-amino acid polypeptide bound to an anorganic bone material which mimics the cell-binding domain of type-I collagen opened a possibility for osteogenic and osteoinductive roles of this hybrid graft material. Ceramics have been present in the spine fusion arena for several decades; however, their use has been limited. The major obstacle in published literature is small sample size resulting in low evidence and a potential for bias. In addition, different physical and chemical properties of various ceramics further contribute to the limited evidence. Although ceramics have several disadvantages, they still hold a great promise as a value-based graft material with being easily available, relatively inexpensive, and non-immunogenic.
Collapse
|
7
|
Chappell HF, Jugdaohsingh R, Powell JJ. Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO 44. J R Soc Interface 2020; 17:20200145. [PMID: 32486955 DOI: 10.1098/rsif.2020.0145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Under physiological conditions, the predominant form of bioavailable silicon (Si) is orthosilicic acid (OSA). In this study, given Si's recognized positive effect on bone growth and integrity, we examined the chemical form and position of this natural Si source in the inorganic bone mineral hydroxyapatite (HA). X-ray diffraction (XRD) of rat tibia bone mineral showed that the mineral phase was similar to that of phase-pure HA. However, theoretical XRD patterns revealed that at the levels found in bone, the 'Si effect' would be virtually undetectable. Thus we used first principles density functional theory calculations to explore the energetic and geometric consequences of substituting OSA into a large HA model. Formation energy analysis revealed that OSA is not favourable as a neutral interstitial substitution but can be incorporated as a silicate ion substituting for a phosphate ion, suggesting that incorporation will only occur under specific conditions at the bone-remodelling interface and that dietary forms of Si will be metabolized to simpler chemical forms, specifically [Formula: see text]. Furthermore, we show that this substitution, at the low silicate concentrations found in the biological environment, is likely to be a driver of calcium phosphate crystallization from an amorphous to a fully mineralized state.
Collapse
Affiliation(s)
- Helen F Chappell
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
8
|
Surmenev RA, Shkarina S, Syromotina DS, Melnik EV, Shkarin R, Selezneva II, Ermakov AM, Ivlev SI, Cecilia A, Weinhardt V, Baumbach T, Rijavec T, Lapanje A, Chaikina MV, Surmeneva MA. Characterization of biomimetic silicate- and strontium-containing hydroxyapatite microparticles embedded in biodegradable electrospun polycaprolactone scaffolds for bone regeneration. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Dalgic AD, Alshemary AZ, Tezcaner A, Keskin D, Evis Z. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. J Biomater Appl 2018; 32:1392-1405. [PMID: 29544381 DOI: 10.1177/0885328218763665] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(ε-caprolactone) - 10% silicate-doped nano-hydroxyapatite - 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.
Collapse
Affiliation(s)
- Ali Deniz Dalgic
- 1 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Ammar Z Alshemary
- 2 Department of Biomedical Engineering, Karabük University, Karabük, Turkey
| | - Ayşen Tezcaner
- 1 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Dilek Keskin
- 1 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Zafer Evis
- 1 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
10
|
Prinz C, Elhensheri M, Rychly J, Neumann HG. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model. J Biomater Appl 2017; 32:139-149. [PMID: 28599578 DOI: 10.1177/0885328217713356] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.
Collapse
|
11
|
Wen C, Kang H, Shih YRV, Hwang Y, Varghese S. In vivo comparison of biomineralized scaffold-directed osteogenic differentiation of human embryonic and mesenchymal stem cells. Drug Deliv Transl Res 2016; 6:121-31. [PMID: 26105532 DOI: 10.1007/s13346-015-0242-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells such as embryonic stem cells (hESCs) and multipotent stem cells like mesenchymal stem cells (hMSCs) hold great promise as potential cell sources for bone tissue regeneration. Comparing the in vivo osteogenesis of hESCs and hMSCs by biomaterial-based cues provides insight into the differentiation kinetics of these cells as well as their potential to contribute to bone tissue repair in vivo. Here, we compared in vivo osteogenic differentiation of hESCs and hMSCs within osteoinductive calcium phosphate (CaP)-bearing biomineralized scaffolds that recapitulate a bone-specific mineral microenvironment. Both hESCs and hMSCs underwent osteogenic differentiation responding to the biomaterial-based instructive cues. Furthermore, hMSCs underwent earlier in vivo osteogenesis compared to hESCs, but both stem cell types acquired a similar osteogenic maturation by 8 weeks of implantation.
Collapse
Affiliation(s)
- Cai Wen
- School of Chemistry and Chemical Engineering, Southeast University, Sipailou 2#, Nanjing, Jiangsu Province, 210096, People's Republic of China
| | - Heemin Kang
- Department of Bioengineering, University of California- San Diego, 9500, Gilman Drive, La Jolla, CA, 92093-0412, USA
| | - Yu-Ru V Shih
- Department of Bioengineering, University of California- San Diego, 9500, Gilman Drive, La Jolla, CA, 92093-0412, USA
| | - YongSung Hwang
- Department of Bioengineering, University of California- San Diego, 9500, Gilman Drive, La Jolla, CA, 92093-0412, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California- San Diego, 9500, Gilman Drive, La Jolla, CA, 92093-0412, USA.
| |
Collapse
|
12
|
Kang H, Shih YRV, Nakasaki M, Kabra H, Varghese S. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. SCIENCE ADVANCES 2016; 2:e1600691. [PMID: 27602403 PMCID: PMC5007071 DOI: 10.1126/sciadv.1600691] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/02/2016] [Indexed: 05/05/2023]
Abstract
The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)-derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.
Collapse
Affiliation(s)
- Heemin Kang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yu-Ru V. Shih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manando Nakasaki
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harsha Kabra
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shyni Varghese
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author.
| |
Collapse
|
13
|
Friederichs RJ, Chappell HF, Shepherd DV, Best SM. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite. J R Soc Interface 2016; 12:20150190. [PMID: 26040597 PMCID: PMC4528584 DOI: 10.1098/rsif.2015.0190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute.
Collapse
Affiliation(s)
- Robert J Friederichs
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Helen F Chappell
- Department of Archaeology and Anthropology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK MRC Human Nutrition Research, 120 Fulborn Road, Cambridge CB1 9NL, UK
| | - David V Shepherd
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Serena M Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
14
|
Han J, Wan P, Ge Y, Fan X, Tan L, Li J, Yang K. Tailoring the degradation and biological response of a magnesium–strontium alloy for potential bone substitute application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:799-811. [DOI: 10.1016/j.msec.2015.09.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/26/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022]
|
15
|
Hutchens SA, Campion C, Assad M, Chagnon M, Hing KA. Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:20. [PMID: 26684617 DOI: 10.1007/s10856-015-5559-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
A synthetic bone graft substitute consisting of silicate-substituted calcium phosphate with increased strut porosity (SiCaP EP) was evaluated in an ovine distal femoral critical sized metaphyseal defect as a standalone bone graft, as an autologous iliac crest bone graft (ICBG) extender (SiCaP EP/ICBG), and when mixed with bone marrow aspirate (SiCaP EP/BMA). Defects were evaluated after 4, 8, and 12 weeks with radiography, decalcified paraffin-embedded histopathology, non-decalcified resin-embedded histomorphometry, and mechanical indentation testing. All test groups exhibited excellent biocompatibility and osseous healing as evidenced by an initial mild inflammatory response followed by neovascularization, bone growth, and marrow infiltration throughout all SiCaP EP-treated defects. SiCaP EP/ICBG produced more bone at early time points, while all groups produced similar amounts of bone at later time points. SiCaP EP/ICBG likewise showed more favorable mechanical properties at early time points, but was equivalent to SiCaP EP and SiCaP EP/BMA at later time points. This study demonstrates that SiCaP EP is efficacious as a standalone bone graft substitute, mixed with BMA, and as an autograft extender.
Collapse
Affiliation(s)
- Stacy A Hutchens
- Baxter Healthcare Corporation, One Baxter Pkwy, Deerfield, IL, 60015, USA.
| | - Charlie Campion
- Baxter Healthcare Corporation, One Baxter Pkwy, Deerfield, IL, 60015, USA
| | - Michel Assad
- Orthopedics and Biomaterials Laboratory, AccelLAB Inc., Boisbriand, QC, Canada
| | - Madeleine Chagnon
- Orthopedics and Biomaterials Laboratory, AccelLAB Inc., Boisbriand, QC, Canada
| | - Karin A Hing
- Institute of Bioengineering, School of Engineering and Materials Science at Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
16
|
Sun C, Tian Y, Xu W, Zhou C, Xie H, Wang X. Development and performance analysis of Si-CaP/fine particulate bone powder combined grafts for bone regeneration. Biomed Eng Online 2015; 14:47. [PMID: 26001383 PMCID: PMC4492003 DOI: 10.1186/s12938-015-0042-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/21/2015] [Indexed: 02/05/2023] Open
Abstract
Background Although autogenous bone grafts as well as several bone graft substitute material have been used for some time, there is high demand for more efficient and less costly bone-substitute materials. Silicon-substituted calcium phosphates (Si-CaP) and fine particulate bone powder (FPBP) preparations have been previously shown to individually possess many of the required features of a bone graft substitute scaffold. However, when applied individually, these two materials fall short of an ideal substitute material. We investigated a new concept of combining Si-CaP with FPBP for improved performance in bone-repair. Methods We assessed Si-CaP/FPBP combined grafts in vitro, by measuring changes in pH, weight loss, water absorption and compressive strength over time. Results Si-CaP/FPBP combined grafts was found to produce conditions of alkaline pH levels compared to FPBP, and scaffold surface morphology conducive to bone cell adhesion, proliferation, differentiation, tissue growth and transport of nutrients, while maintaining elasticity and mechanical strength and degradation at a rate closer to osteogenesis. Conclusion Si-CaP/FPBP combined grafts was found to be superior to any of the two components individually.
Collapse
Affiliation(s)
- Chengli Sun
- Department of Orthopaedic Surgery, The Second Harbin City Hospital, Harbin, 150056, China.
| | - Ye Tian
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150086, China.
| | - Wenxiao Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150086, China.
| | - Changlong Zhou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150086, China.
| | - Huanxin Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150086, China.
| | - Xintao Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150086, China.
| |
Collapse
|
17
|
Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials 2015; 44:36-44. [PMID: 25617124 DOI: 10.1016/j.biomaterials.2014.12.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 01/09/2023]
Abstract
The supply of titanium implants which are widely used in orthopaedics with both regenerative and anti-microbial properties will achieve a great progress in bone regeneration. We asked, whether by appropriate concentrations of copper ions it will be possible both to inhibit growth of bacteria and stimulate biological responses in mesenchymal stem cells (MSC). Using titanium material which released galvanically deposited copper at concentrations from 0.3 to 1.75 mM, growth of planktonic Staphylococcus aureus was blocked and more importantly adherent bacteria were cleared from the material surface within 24 h. To test biological responses of human bone marrow derived MSC due to copper ions, we found that copper stimulated the proliferation of MSC in a narrow concentration range around 0.1 mM. Similar copper concentrations enhanced osteogenic differentiation of MSC when cells were cultured in osteogenic differentiation medium. We observed increased activity of alkaline phosphatase (ALP), higher expression of collagen I, osteoprotegerin, osteopontin and finally mineralization of the cells. We conclude that titanium implants that release copper ions can be effective against bacterial infections at higher concentrations of copper near the implant surface and can promote bone regeneration when its concentration becomes lower due to diffusion.
Collapse
Affiliation(s)
- Ines Burghardt
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Frank Lüthen
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Carmen Zietz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, 18057 Rostock, Germany
| | | | - Joachim Rychly
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
18
|
Huang SC, Wu BC, Ding SJ. Stem cell differentiation-induced calcium silicate cement with bacteriostatic activity. J Mater Chem B 2015; 3:570-580. [DOI: 10.1039/c4tb01617c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The calcium silicate cement (CSC) on osteogenic differentiation of hMSCs and bacteriostatic abilities was more effective than calcium phosphate cement (CPC).
Collapse
Affiliation(s)
- Shu-Ching Huang
- School of Dentistry
- Chung Shan Medical University
- Taichung City 402
- Taiwan
| | - Buor-Chang Wu
- School of Dentistry
- Chung Shan Medical University
- Taichung City 402
- Taiwan
| | - Shinn-Jyh Ding
- Department of Dentistry
- Chung Shan Medical University Hospital
- Taichung City 402
- Taiwan
- Institute of Oral Science
| |
Collapse
|
19
|
De Godoy RF, Hutchens S, Campion C, Blunn G. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5387. [PMID: 25596863 DOI: 10.1007/s10856-015-5387-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
While many synthetic ceramic bone graft substitutes (BGSs) have osteoconductive properties (e.g. provide a physical scaffold for osteointegration of surrounding bone tissue), certain BGSs are osteostimulative in that they actively upregulate mesenchymal stem cell proliferation and stimulate differentiation into osteoblast-like cells. The osteostimulative properties of silicate-substituted calcium phosphate with enhanced porosity (SiCaP EP) were evaluated in vitro with STRO-1+ immunoselected human bone marrow derived mesenchymal stem cells (HBMSCs). Osteostimulative materials (SiCaP) and Bioglass 45S5 (Bioglass) were also assessed as positive controls along with non-silicate substituted hydroxyapatite as a negative control. HBMSCs were also assessed on Thermanox discs cultured in basal and osteogenic media to determine when osteogenic differentiation could be significantly detected with this in vitro cell system. HBMSC viability and necrosis, total DNA content, alkaline phosphatase (ALP) expression, and osteocalcin expression were evaluated after 7, 14, 21, and 28 days. It was demonstrated that SiCaP EP is osteostimulative based on its propensity to support STRO-1+ HBMSC proliferation and ability to promote the differentiation of HBMSCs down the osteoblastic lineage from ALP-expressing, matrix-producing osteoblasts to Osteocalcin-producing pre-osteocytes without the presence of external osteogenic factors. SiCaP EP permitted greater HBMSC attachment as well as ALP and Osteocalcin expression than Bioglass which may be attributed to its microstructure and chemistry.
Collapse
Affiliation(s)
- Roberta Ferro De Godoy
- Institute of Orthopaedics and Musculo-Skeletal Science, John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculo-Skeletal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | | | | | | |
Collapse
|
20
|
Lucendo-Villarin B, Cameron K, Szkolnicka D, Travers P, Khan F, Walton JG, Iredale J, Bradley M, Hay DC. Stabilizing hepatocellular phenotype using optimized synthetic surfaces. J Vis Exp 2014:51723. [PMID: 25285607 DOI: 10.3791/51723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Currently, one of the major limitations in cell biology is maintaining differentiated cell phenotype. Biological matrices are commonly used for culturing and maintaining primary and pluripotent stem cell derived hepatocytes. While biological matrices are useful, they permit short term culture of hepatocytes, limiting their widespread application. We have attempted to overcome the limitations using a synthetic polymer coating. Polymers represent one of the broadest classes of biomaterials and possess a wide range of mechanical, physical and chemical properties, which can be fine-tuned for purpose. Importantly, such materials can be scaled to quality assured standards and display batch-to-batch consistency. This is essential if cells are to be expanded for high through-put screening in the pharmaceutical testing industry or for cellular based therapy. Polyurethanes (PUs) are one group of materials that have shown promise in cell culture. Our recent progress in optimizing a polyurethane coated surface, for long-term culture of human hepatocytes displaying stable phenotype, is presented and discussed.
Collapse
Affiliation(s)
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | | | - Paul Travers
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | | | | | - John Iredale
- MRC Centre for Inflammation Research, University of Edinburgh
| | | | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh;
| |
Collapse
|
21
|
Kang H, Wen C, Hwang Y, Shih YRV, Kar M, Seo SW, Varghese S. Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells. J Mater Chem B 2014; 2:5676-5688. [PMID: 25114796 DOI: 10.1039/c4tb00714j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physical and chemical properties of a matrix play an important role in determining various cellular behaviors, including lineage specificity. We demonstrate that the differentiation commitment of human embryonic stem cells (hESCs), both in vitro and in vivo, can be solely achieved through synthetic biomaterials. hESCs were cultured using mineralized synthetic matrices mimicking a calcium phosphate (CaP)-rich bone environment differentiated into osteoblasts in the absence of any osteogenic inducing supplements. When implanted in vivo, these hESC-laden mineralized matrices contributed to ectopic bone tissue formation. In contrast, cells within the corresponding non-mineralized matrices underwent either osteogenic or adipogenic fate depending upon the local cues present in the microenvironment. To our knowledge, this is the first demonstration where synthetic matrices are shown to induce terminal cell fate specification of hESCs exclusively by biomaterial-based cues both in vitro and in vivo. Technologies that utilize tissue specific cell-matrix interactions to control stem cell fate could be a powerful tool in regenerative medicine. Such approaches can be used as a tool to advance our basic understanding and assess the translational potential of stem cells.
Collapse
Affiliation(s)
- Heemin Kang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA ; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cai Wen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA ; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210018, China
| | - Yongsung Hwang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yu-Ru V Shih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mrityunjoy Kar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sung Wook Seo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA ; Department of Orthopaedic Surgery, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Shyni Varghese
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA ; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Sitasuwan P, Lee LA, Li K, Nguyen HG, Wang Q. RGD-conjugated rod-like viral nanoparticles on 2D scaffold improve bone differentiation of mesenchymal stem cells. Front Chem 2014; 2:31. [PMID: 24904922 PMCID: PMC4034042 DOI: 10.3389/fchem.2014.00031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022] Open
Abstract
Viral nanoparticles have uniform and well-defined nano-structures and can be produced in large quantities. Several plant viral nanoparticles have been tested in biomedical applications due to the lack of mammalian cell infectivity. We are particularly interested in using Tobacco mosaic virus (TMV), which has been demonstrated to enhance bone tissue regeneration, as a tunable nanoscale building block for biomaterials development. Unmodified TMV particles have been shown to accelerate osteogenic differentiation of adult stem cells by synergistically upregulating bone morphogenetic protein 2 (BMP2) and integrin-binding bone sialoprotein (IBSP) expression with dexamethasone. However, their lack of affinity to mammalian cell surface resulted in low initial cell adhesion. In this study, to increase cell binding capacity of TMV based material the chemical functionalization of TMV with arginine-glycine-aspartic acid (RGD) peptide was explored. An azide-derivatized RGD peptide was "clicked" to tyrosine residues on TMV outer surface via an efficient copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The ligand spacing is calculated to be 2-4 nm, which could offer a polyvalent ligand clustering effect for enhanced cell receptor signaling, further promoting the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs).
Collapse
Affiliation(s)
- Pongkwan Sitasuwan
- Department of Chemistry and Biochemistry, University of South Carolina Columbia, SC, USA ; Integrated Micro-Chromatography Systems Columbia, SC, USA
| | - L Andrew Lee
- Department of Chemistry and Biochemistry, University of South Carolina Columbia, SC, USA ; Integrated Micro-Chromatography Systems Columbia, SC, USA
| | - Kai Li
- Department of Chemistry and Biochemistry, University of South Carolina Columbia, SC, USA ; Weifang Entry-Exit Inspection and Quanrantine Bureau Weifang, Shandong, China
| | - Huong Giang Nguyen
- Department of Chemistry and Biochemistry, University of South Carolina Columbia, SC, USA ; Department of Chemistry, The Institute of Catalysis for Energy Processes, Northwestern University Evanston, IL, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina Columbia, SC, USA
| |
Collapse
|
23
|
Fortunati D, Chau DYS, Wang Z, Collighan RJ, Griffin M. Cross-linking of collagen I by tissue transglutaminase provides a promising biomaterial for promoting bone healing. Amino Acids 2014; 46:1751-61. [DOI: 10.1007/s00726-014-1732-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/19/2014] [Indexed: 01/05/2023]
|
24
|
Abstract
Healing fractures resulting from osteoporosis or cancer remains a significant clinical challenge. In these populations, healing is often impaired not only due to age and disease, but also by other therapeutic interventions such as radiation, steroids, and chemotherapy. Despite substantial improvements in the treatment of osteoporosis over the last few decades, osteoporotic fractures are still a major clinical challenge in the elderly population due to impaired healing. Similar fractures with impaired healing are also prevalent in cancer patients, especially those with tumor growing in bone. Treatment options for cancer patients are further complicated by the fact that bone anabolic therapies are contraindicated in patients with tumors. Therefore, many patients undergo surgery to repair the fracture, and bone grafts are often used to stabilize orthopedic implants and provide a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials have been investigated as bone grafts for repair of osteoporotic fractures, including calcium phosphate bone cements, resorbable polymers, and allograft or autograft bone. In order to re-establish normal bone repair, bone grafts have been augmented with anabolic agents, such as mesenchymal stem cells or recombinant human bone morphogenetic protein-2. These developing approaches to bone grafting are anticipated to improve the clinical management of osteoporotic and cancer-induced fractures.
Collapse
Affiliation(s)
- Julie A Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, USA,
| | | |
Collapse
|
25
|
Yang S, Wang M, Zhang H, Cai KY, Shen XK, Deng F, Zhang Y, Wang L. Influence of dexamethasone-loaded TNTs on the proliferation and osteogenic differentiation of rat mesenchymal stem cells. RSC Adv 2014. [DOI: 10.1039/c4ra11498a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of cellular responses of rMSCs to Dex-loaded TNT arrays.
Collapse
Affiliation(s)
- Sheng Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Ming Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - He Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Kai-yong Cai
- Key Laboratory of Biorheological Science and Technology
- The Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044, China
| | - Xin-kun Shen
- Key Laboratory of Biorheological Science and Technology
- The Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044, China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Yi Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Lu Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| |
Collapse
|
26
|
Lü X, Wang J, Li B, Zhang Z, Zhao L. Gene expression profile study on osteoinductive effect of natural hydroxyapatite. J Biomed Mater Res A 2013; 102:2833-41. [PMID: 24115491 DOI: 10.1002/jbm.a.34951] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/29/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023]
Abstract
The aim of this study was to investigate the osteoinductive effect of natural hydroxyapatite (NHA). NHA was extracted from pig bones and prepared into disk-like samples. Then, proliferation of mouse bone mesenchymal stem cells (MSCs) cultured on NHA was assessed by the methylthiazoltetrazolium (MTT) assay. Furthermore, microarray technology was applied to obtain the gene expression profiles of MSCs cultured on NHA at 24, 48, and 72 h. The gene expression profile was then comprehensively analyzed by clustering, Gene Ontology (GO), Gene Microarray Pathway Profiler (GenMAPP) and Ingenuity Pathway Analysis (IPA). According to the results of microarray experiment, 8992 differentially expressed genes were obtained. 90 differential expressed genes related to HA osteogenic differentiation were determined by GO analysis. These genes included not only 6 genes related to HA osteogenic differentiation as mentioned in the literatures but also newly discovered 84 genes. Some important signaling pathways (TGF-β, MAPK, Wnt, etc.) were influenced by these genes. Gene interaction networks were obtained by IPA software, in which the scoring values of two networks were highest, and their main functions were related to cell development. The comprehensive analysis of these results indicate that NHA regulate some crucial genes (e.g., Bmp2, Spp1) and then activate some pathways such as TGF-β signaling pathway, and ultimately osteogenic differentiation was induced.
Collapse
Affiliation(s)
- Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Tam MD, Laycock SD, Jayne D, Babar J, Noble B. 3-D printouts of the tracheobronchial tree generated from CT images as an aid to management in a case of tracheobronchial chondromalacia caused by relapsing polychondritis. J Radiol Case Rep 2013; 7:34-43. [PMID: 24421951 DOI: 10.3941/jrcr.v7i8.1390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This report concerns a 67 year old male patient with known advanced relapsing polychondritis complicated by tracheobronchial chondromalacia who is increasingly symptomatic and therapeutic options such as tracheostomy and stenting procedures are being considered. The DICOM files from the patient's dynamic chest CT in its inspiratory and expiratory phases were used to generate stereolithography (STL) files and hence print out 3-D models of the patient's trachea and central airways. The 4 full-sized models allowed better understanding of the extent and location of any stenosis or malacic change and should aid any planned future stenting procedures. The future possibility of using the models as scaffolding to generate a new cartilaginous upper airway using regenerative medical techniques is also discussed.
Collapse
Affiliation(s)
- Matthew David Tam
- Department of Radiology, Southend University Hospital NHS Foundation, Westcliff-on-Sea, Essex, UK ; P ostgraduate Medical Institute, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Stephen David Laycock
- East Anglian Radiography Research, Modelling and 3-D Printing Group, University Campus Suffolk, UK ; School of Computing Sciences, University of East Anglia, Norwich, UK
| | - David Jayne
- Department of Clinical Medicine, Addenbrookes Hospital NHS Trust, Cambridge, UK
| | - Judith Babar
- Department of Clinical Radiology, Addenbrookes Hospital NHS Trust, Cambridge, UK
| | - Brendon Noble
- School of Science, Technology and Health, University Campus Suffolk, Ipswich, UK
| |
Collapse
|
28
|
Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int 2013; 2013:496218. [PMID: 23577036 PMCID: PMC3615627 DOI: 10.1155/2013/496218] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.
Collapse
|