1
|
Özkabadayı Y, Türk M, Kumandaş A, Karahan S. Amino acid surface modified bioglass: A candidate biomaterial for bone tissue engineering 1. Microsc Res Tech 2024. [PMID: 39154380 DOI: 10.1002/jemt.24659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Bioglasses are solid materials consisted of sodium oxide, calcium oxide, silicon dioxide and phosphorus in various proportions and have used in bone tissue engineering. There have been ongoing efforts to improve the surface properties of bioglasses to increase biocompatibility and performance. The aim of the present study is to modify the bioglass surface with an amino acid mixture consisting of arginine, aspartic acid, phenylalanine, cysteine, histidine and lysine, to characterize the surface, and to evaluate the performance and biocompatibility in vitro and in vivo. The untreated bioglass, bioglass kept in simulated body fluid (SBF), and modified bioglass were used in further evaluation. After confirmation of the surface modification with FT-IR analyses and SEM analyses, MC3T3-E1 preosteoblasts adhesion on the surface was also revealed by SEM. The modified bioglass had significantly higher ALP activity in colorimetric measurement, rate of calcium accumulations in Alizarin red s staining, lower rate of cell death in Annexin-V/PI staining to determine apoptosis and necrosis. Having higher cell viability rate in MTT test and absence of genotoxicity in micronucleus test (OECD 487), the modified bioglass was further confirmed for biocompatibility in vitro. The results of the rat tibial defect model revealed that the all bioglass treatments had a significantly better bone healing score compared to the untreated negative control. However, the modified bioglass exhibited significantly better bone healing efforts especially during the first and the second months compared to the other bioglass treatment treatments. As a result, the amino acid surface modification of bioglasses improves the surface biocompatibility and osteogenic performance that makes the amino acid modified bioglass a better candidate for bone tissue engineering. RESEARCH HIGHLIGHTS: Bioglass surface modification with amino acids contributes to bioglass-tissue interaction with an improved cell attachment. Modified bioglass increases in vitro Alp activity and calcium accumulation, and also positively affects cell behavior by supporting cell adaptation. Bioglass exerts osteogenic potential in vivo especially during early bone healing.
Collapse
Affiliation(s)
- Yasin Özkabadayı
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Kirikkale University, Kirikkale, Turkey
| | - Mustafa Türk
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Kirikkale University, Kirikkale, Turkey
| | - Ali Kumandaş
- Faculty of Veterinary Medicine, Department of Surgery, Kirikkale University, Kirikkale, Turkey
- Faculty of Veterinary Medicine, Turkish Manas University, Bishkek, Kyrgyzstan
| | - Siyami Karahan
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
2
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
3
|
Huang R, Mao P, Xiong L, Qin G, Zhou J, Zhang J, Li Z, Wu J. Negatively charged nano-hydroxyapatite can be used as a phosphorus fertilizer to increase the efficacy of wollastonite for soil cadmium immobilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130291. [PMID: 36345064 DOI: 10.1016/j.jhazmat.2022.130291] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper application of phosphorus (P) fertilizer during soil cadmium (Cd) immobilization reduces the efficiency of fertilizer and Cd remediation. In this study, we synthesized three types of nano-hydroxyapatite (NHAP) with different surface charges as slow-release P fertilizers during Cd immobilization. We also evaluated the effects of wollastonite application with or without NHAP addition, in comparison with triple superphosphate (TSP) or bulk hydroxyapatite, on Cd accumulation in Amaranthus tricolor L. The results showed that adding wollastonite significantly reduced P availability (23.5%) in the soil, but it did not inhibit plant P uptake. In wollastonite-amended soil, the application of negatively/positively charged NHAP significantly increased plant biomass by 643-865% and decreased Cd uptake by 74.8-75.1% compared to the unamended soil as well as showed greater efficiency than those with TSP. This was ascribed to the increased soil pH (from 3.94 to 6.52-6.63) and increased abundance of organic acids (including citric acid, malic acid, lactic acid, and acetic acid) secreted by plants. In addition, the P-preferring bacterial class Bacteroidia was specific to soils amended with both wollastonite and NHAP-. These results suggest that NHAP- may be an appropriate P fertilizer for soil Cd immobilization using wollastonite.
Collapse
Affiliation(s)
- Rong Huang
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410221, China
| | - Peng Mao
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Lei Xiong
- Smart Water Affairs Research Center, Shenzhen University, Shenzhen 518000, China
| | - Guoming Qin
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jinge Zhou
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jingfan Zhang
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Zhian Li
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jingtao Wu
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
4
|
Chen Z, Wang X, Luo J, Zhang B, Shen F, Li B, Yang J. Synthesis and characterization of rod-like amino acids/nanohydroxyapatite composites to inhibit osteosarcoma. RSC Adv 2022; 12:36103-36114. [PMID: 36545101 PMCID: PMC9756758 DOI: 10.1039/d2ra03784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, rod-like hydroxyapatite (HA) with uniform morphology and controllable particle size modified by doping with two different amino acids (alanine and threonine) was synthesized by a microwave hydrothermal method. The physical and chemical properties of the composites were tested by utilizing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), general thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The SEM and XRD results show that the presence of amino acids (especially threonine) can significantly reduce the aspect ratio and crystallinity of hydroxyapatite. Pure hydroxyapatite and modified hydroxyapatite doped with two different proportions of amino acids were cultured with mouse osteoblasts (MC3T3-E1) for 1, 3 and 5 days, respectively, nanohydroxyapatite modified by threonine has better biocompatibility compared with pure hydroxyapatite. The amino acid-modified hydroxyapatite samples were co-cultured with osteosarcoma cells (MG63) for 1, 4 and 7 days, respectively, and showed better inhibitory effects on osteosarcoma cells. The nanohydroxyapatite doped with amino acids could be used as a potential drug that promotes bone repair and inhibits the growth of osteosarcoma cells.
Collapse
Affiliation(s)
- Zhengxiong Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen ValleyFoshan 528200P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Jing Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Bowen Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Fei Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of TechnologyWuhan 430070P. R. China
| |
Collapse
|
5
|
Huang SM, Liu SM, Ko CL, Chen WC. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14050976. [PMID: 35267796 PMCID: PMC8912323 DOI: 10.3390/polym14050976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA), especially in the form of HA nanoparticles (HANPs), has excellent bioactivity, biodegradability, and osteoconductivity and therefore has been widely used as a template or additives for drug delivery in clinical applications, such as dentistry and orthopedic repair. Due to the atomically anisotropic distribution on the preferred growth of HA crystals, especially the nanoscale rod-/whisker-like morphology, HA can generally be a good candidate for carrying a variety of substances. HA is biocompatible and suitable for medical applications, but most drugs carried by HANPs have an initial burst release. In the adsorption mechanism of HA as a carrier, specific surface area, pore size, and porosity are important factors that mainly affect the adsorption and release amounts. At present, many studies have developed HA as a drug carrier with targeted effect, porous structure, and high porosity. This review mainly discusses the influence of HA structures as a carrier on the adsorption and release of active molecules. It then focuses on the benefits and effects of different types of polymer-HA composites to re-examine the proteins/drugs carry and release behavior and related potential clinical applications. This literature survey can be divided into three main parts: 1. interaction and adsorption mechanism of HA and drugs; 2. advantages and application fields of HA/organic composites; 3. loading and drug release behavior of multifunctional HA composites in different environments. This work also presents the latest development and future prospects of HA as a drug carrier.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Lee WH, Rohanizadeh R, Loo CY. In situ functionalizing calcium phosphate biomaterials with curcumin for the prevention of bacterial biofilm infections. Colloids Surf B Biointerfaces 2021; 206:111938. [PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), 30450, Ipoh, Perak, Malaysia
| | - Ramin Rohanizadeh
- Research Institute McGill University Research Centre (RI-MUHC), Montreal, QC, Canada
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), 30450, Ipoh, Perak, Malaysia.
| |
Collapse
|
7
|
Szustakiewicz K, Włodarczyk M, Gazińska M, Rudnicka K, Płociński P, Szymczyk-Ziółkowska P, Ziółkowski G, Biernat M, Sieja K, Grzymajło M, Jóźwiak P, Michlewska S, Trochimczuk AW. The Effect of Pore Size Distribution and l-Lysine Modified Apatite Whiskers (HAP) on Osteoblasts Response in PLLA/HAP Foam Scaffolds Obtained in the Thermally Induced Phase Separation Process. Int J Mol Sci 2021; 22:3607. [PMID: 33808501 PMCID: PMC8036975 DOI: 10.3390/ijms22073607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
In this research, we prepared foam scaffolds based on poly(l-lactide) (PLLA) and apatite whiskers (HAP) using thermally induced phase separation technique supported by the salt leaching process (TIPS-SL). Using sodium chloride having a size of (a) 150-315 μm, (b) 315-400 μm, and (c) 500-600 μm, three types of foams with different pore sizes have been obtained. Internal structure of the obtained materials has been investigated using SEM as well as μCT. The materials have been studied by means of porosity, density, and compression tests. As the most promising, the composite prepared with salt size of 500-600 μm was prepared also with the l-lysine modified apatite. The osteoblast hFOB 1.19 cell response for the scaffolds was also investigated by means of cell viability, proliferation, adhesion/penetration, and biomineralization. Direct contact cytotoxicity assay showed the cytocompatibility of the scaffolds. All types of foam scaffolds containing HAP whiskers, regardless the pore size or l-lysine modification induced significant stimulatory effect on the cal-cium deposits formation in osteoblasts. The PLLA/HAP scaffolds modified with l-lysine stimulated hFOB 1.19 osteoblasts proliferation. Compared to the scaffolds with smaller pores (150-315 µm and 315-400 µm), the PLLA/HAP foams with large pores (500-600 µm) promoted more effective ad-hesion of osteoblasts to the surface of the biomaterial.
Collapse
Affiliation(s)
- Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.G.); (K.S.); (M.G.); (A.W.T.)
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (P.P.)
| | - Małgorzata Gazińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.G.); (K.S.); (M.G.); (A.W.T.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (P.P.)
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, Wrocław University of Science and Technology (WUST), Łukasiewicza 5, 50-370 Wrocław, Poland; (P.S.-Z.); (G.Z.)
| | - Grzegorz Ziółkowski
- Centre for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, Wrocław University of Science and Technology (WUST), Łukasiewicza 5, 50-370 Wrocław, Poland; (P.S.-Z.); (G.Z.)
| | - Monika Biernat
- Department of Biomaterials, Ceramic and Concrete Division, Łukasiewicz Research Network Institute of Ceramics and Building Materials, 02-676 Warsaw, Poland;
| | - Katarzyna Sieja
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.G.); (K.S.); (M.G.); (A.W.T.)
| | - Michał Grzymajło
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.G.); (K.S.); (M.G.); (A.W.T.)
| | - Piotr Jóźwiak
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Andrzej W. Trochimczuk
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.G.); (K.S.); (M.G.); (A.W.T.)
| |
Collapse
|
8
|
Gazińska M, Krokos A, Kobielarz M, Włodarczyk M, Skibińska P, Stępak B, Antończak A, Morawiak M, Płociński P, Rudnicka K. Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites. Int J Mol Sci 2020; 21:ijms21186711. [PMID: 32933206 PMCID: PMC7556045 DOI: 10.3390/ijms21186711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Novel biocomposites of poly(L-lactide) (PLLA) and poly(l-lactide-co-glycolide) (PLLGA) with 10 wt.% of surface-modified hydroxyapatite particles, designed for applications in bone tissue engineering, are presented in this paper. The surface of hydroxyapatite (HAP) was modified with polyethylene glycol by using l-lysine as a linker molecule. The modification strategy fulfilled two important goals: improvement of the adhesion between the HAP surface and PLLA and PLLGA matrices, and enhancement of the osteological bioactivity of the composites. The surface modifications of HAP were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), TGA, and elemental composition analysis. The influence of hydroxyapatite surface functionalization on the thermal and in vitro biological properties of PLLA- and PLLGA-based composites was investigated. Due to HAP modification with polyethylene glycol, the glass transition temperature of PLLA was reduced by about 24.5 °C, and melt and cold crystallization abilities were significantly improved. These achievements were scored based on respective shifting of onset of melt and cold crystallization temperatures and 1.6 times higher melt crystallization enthalpy compared with neat PLLA. The results showed that the surface-modified HAP particles were multifunctional and can act as nucleating agents, plasticizers, and bioactive moieties. Moreover, due to the presented surface modification of HAP, the crystallinity degree of PLLA and PLLGA and the polymorphic form of PLLA, the most important factors affecting mechanical properties and degradation behaviors, can be controlled.
Collapse
Affiliation(s)
- Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (M.G.); (A.K.)
| | - Anna Krokos
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (M.G.); (A.K.)
| | - Magdalena Kobielarz
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (P.S.); (P.P.); (K.R.)
| | - Paulina Skibińska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (P.S.); (P.P.); (K.R.)
| | - Bogusz Stępak
- Laser and Fibre Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (B.S.); (A.A.)
| | - Arkadiusz Antończak
- Laser and Fibre Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (B.S.); (A.A.)
| | - Milena Morawiak
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (P.S.); (P.P.); (K.R.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (P.S.); (P.P.); (K.R.)
| |
Collapse
|
9
|
Lee WH, Loo CY, Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:929-939. [DOI: 10.1016/j.msec.2019.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/22/2023]
|
10
|
Zarif F, Sharif F, Batool M, Haider A, Gul U, Gilani MA, Idrees A, Tabassum S. Enhanced Surface Properties of Hydroxyapatite by Grafting Tartaric Acid for Sustained Release of Moxifloxacin. ChemistrySelect 2019. [DOI: 10.1002/slct.201803398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Faiza Zarif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University IslamabadLahore Campus Lahore- 54600 Pakistan
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University IslamabadLahore Campus Lahore- 54600 Pakistan
| | - Madeeha Batool
- Institute of ChemistryUniversity of the Punjab Lahore 54000 Pakistan
| | - Ammar Haider
- Institute of ChemistryUniversity of the Punjab Lahore 54000 Pakistan
| | - Urooj Gul
- H. E. J. Research Institute of ChemistryInternational Centre for Chemical and Biological SciencesUniversity of Karachi Karachi 75270 Pakistan
| | - Mazhar A. Gilani
- Department of ChemistryCOMSATS University Islamabad, Lahore, Campus Lahore- 54600 Pakistan
| | - Ayesha Idrees
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University IslamabadLahore Campus Lahore- 54600 Pakistan
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University IslamabadLahore Campus Lahore- 54600 Pakistan
| |
Collapse
|
11
|
Zarif F, Tabassum S, Jamal A, Gul U, Gilani MA, Sharif F, Zahid S, Asif A, Chaudhry AA, Rehman IU. Surface-grafted remedial hydroxyapatite nanoparticles to avoid operational infections. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2339-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Comeau P, Willett T. Impact of Side Chain Polarity on Non-Stoichiometric Nano-Hydroxyapatite Surface Functionalization with Amino Acids. Sci Rep 2018; 8:12700. [PMID: 30140033 PMCID: PMC6107576 DOI: 10.1038/s41598-018-31058-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/06/2018] [Indexed: 11/08/2022] Open
Abstract
In this study the affinity of three amino acids for the surface of non-stoichiometric hydroxyapatite nanoparticles (ns-nHA) was investigated under different reaction conditions. The amino acids investigated were chosen based on their differences in side chain polarity and potential impact on this surface affinity. While calcium pre-saturation of the calcium-deficient ns-nHA was not found to improve attachment of any of the amino acids studied, the polarity and fraction of ionized functional side groups was found to have a significant impact on this attachment. Overall, amino acid attachment to ns-nHA was not solely reliant on carboxyl groups. In fact, it seems that amine groups also notably interacted with the negative ns-nHA surface and increased the degree of surface binding achieved. As a result, glycine and lysine had greater attachment to ns-nHA than aspartic acid under the reaction conditions studied. Lastly, our results suggest that a layer of each amino acid forms at the surface of ns-nHA, with aspartic acid attachment the most stable and its surface coverage the least of the three amino acids studied.
Collapse
Affiliation(s)
- Patricia Comeau
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Thomas Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
13
|
Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 2018; 35:3-14. [PMID: 30139530 DOI: 10.1016/j.dental.2018.08.288] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/30/2023]
Abstract
Calcium phosphates (CaP) are the main constituents of the mineral phase in bones and teeth and, along with calcium silicates and bioactive glasses, have been extensively investigated in remineralization of enamel and dentin. When used as ion-releasing fillers in resin-based materials, they could contribute to extend the service life of adhesive restorations, remineralize caries-affected dentin or prevent caries lesions under sealants and orthodontic brackets. However, the development of resin-based bioactive materials is not straightforward because of the several compositional variables involved in ion release. Also, CaP particles do not reinforce the material; therefore, if high mechanical properties are required, the ratio between CaP particles and reinforcing fillers must be observed. Several research groups have investigated how CaP phase, particle size and content, as well as resin matrix formulation affect remineralization, ion release kinetics and mechanical properties of these materials. This review presents an overview of the main findings reported in the literature.
Collapse
Affiliation(s)
- Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo School of Dentistry, Av. Prof. Lineu Prestes, 2227 São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
14
|
Tõnsuaadu K, Gruselle M, Kriisa F, Trikkel A, Gredin P, Villemin D. Dependence of the interaction mechanisms between L-serine and O-phospho-L-serine with calcium hydroxyapatite and copper modified hydroxyapatite in relation with the acidity of aqueous medium. J Biol Inorg Chem 2018; 23:929-937. [PMID: 29987356 DOI: 10.1007/s00775-018-1594-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022]
Abstract
Motivated by the role of copper ions in biological processes the aim of this study was to elucidate the impact of copper ions bound to hydroxyapatite on L-serine (L-Ser) and O-phospho-L-serine (O-Ph-L-Ser) adsorption at different acidity of aqueous solutions. The adsorption phenomenon was studied by FTIR, UV, and AA spectroscopy, XRD and thermal analysis methods together with the evolved gases analysis taking into consideration the ionic state of the amino acids as well as the apatite surface state, which are tightly correlated with the solution pH. In acidic solution, the main process involves apatite dissolution releasing calcium and copper ions. At pH > 5 the complexation of amino acids with Ca2+ or Cu2+ ions is more important leading also to the release of cations. The ability of copper ions to form water soluble complexes with L-Ser and O-Ph-L-Ser leads to an important loss of these ions, while calcium release is very low at this pH. Therefore, the use of copper ions substituting calcium in the apatite structure to enhance the ability of amino acids adsorption on the apatite surface seems problematic even at pH > 5.
Collapse
Affiliation(s)
- Kaia Tõnsuaadu
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia.
| | - Michel Gruselle
- CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.,Sorbonne Université, UPMC Université Paris 06, 4 Place Jussieu, 75005, Paris, France
| | - Frieda Kriisa
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Andres Trikkel
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Patrick Gredin
- Sorbonne Université, UPMC Université Paris 06, 4 Place Jussieu, 75005, Paris, France.,Chimie Paris Tech, PSL Research Université, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Didier Villemin
- LCTM, UMR 6507, ENSICAEN, INC3M, Fr 3038, Normandie Université, 14050, Caen, France
| |
Collapse
|
15
|
Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. J R Soc Interface 2016; 13:20160462. [PMID: 27707904 PMCID: PMC5095212 DOI: 10.1098/rsif.2016.0462] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
Abstract
Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen. Glu, Arg and Lys intake can also increase bone mineral density by stimulating growth hormone production. In vitro studies suggest that the role of AAs in controlling HA precipitation is affected by their mobility. While dissolved AAs are able to inhibit HA precipitation and growth by chelating Ca2+ and PO43- ions or binding to nuclei of calcium phosphate and preventing their further growth, AAs bound to surfaces can promote HA precipitation by attracting Ca2+ and PO43- ions and increasing the local supersaturation. Overall, the effect of AAs on HA precipitation is worth being investigated more, especially under conditions closer to the physiological ones, where the presence of other factors such as collagen, mineralization inhibitors, and cells heavily influences HA precipitation. A deeper understanding of the role of AAs in HA mineralization will increase our fundamental knowledge related to bone formation, and could lead to new therapies to improve bone regeneration in damaged tissues or cure pathological diseases caused by excessive mineralization in tissues such as cartilage, blood vessels and cardiac valves.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
16
|
Tavafoghi M, Brodusch N, Gauvin R, Cerruti M. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface 2016; 13:20150986. [PMID: 26791001 PMCID: PMC4759803 DOI: 10.1098/rsif.2015.0986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - N Brodusch
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - R Gauvin
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
17
|
Tabassum S, Zahid S, Zarif F, Gilani MA, Manzoor F, Rehman F, Jamal A, Chaudhry AA, Siddiqi SA, Rehman IU. Efficient drug delivery system for bone repair by tuning the surface of hydroxyapatite particles. RSC Adv 2016. [DOI: 10.1039/c6ra24551j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Efficient drug delivery vehicles, hydroxyapatite modified by carboxylic acids, were prepared by an in situ co-precipitation method. The presence of functional groups and subsequent surface properties of modified HA improved ibuprofen loading and release efficiency.
Collapse
Affiliation(s)
- Sobia Tabassum
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Saba Zahid
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Faiza Zarif
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry
- College of Science and Humanity Studies
- Prince Sattam Bin Abdulaziz University
- Alkharj 11942
- Saudi Arabia
| | - Faisal Manzoor
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Arshad Jamal
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Saadat Anwar Siddiqi
- Interdisciplinary Research Center in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Ihtesham ur Rehman
- Department of Materials Science and Engineering
- The Kroto Research Institute
- The University of Sheffield
- Sheffield S3 7HQ
- UK
| |
Collapse
|
18
|
Wu X, Zhao X, Li Y, Yang T, Yan X, Wang K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:150-7. [DOI: 10.1016/j.msec.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/13/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
|
19
|
Chan KH, Zhuo S, Ni M. Priming the Surface of Orthopedic Implants for Osteoblast Attachment in Bone Tissue Engineering. Int J Med Sci 2015; 12:701-7. [PMID: 26392807 PMCID: PMC4571547 DOI: 10.7150/ijms.12658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/14/2015] [Indexed: 01/04/2023] Open
Abstract
The development of better orthopedic implants is incessant. While current implants can function reliably in the human body for a long period of time, there are still a significant number of cases for which the implants can fail prematurely due to poor osseointegration of the implant with native bone. Increasingly, it is recognized that it is extremely important to facilitate the attachment of osteoblasts on the implant so that a proper foundation of extracellular matrix (ECM) can be laid down for the growth of new bone tissue. In order to facilitate the osseointegration of the implant, both the physical nanotopography and chemical functionalization of the implant surface have to be optimized. In this short review, however, we explore how simple chemistry procedures can be used to functionalize the surfaces of three major classes of orthopedic implants, i.e. ceramics, metals, and polymers, so that the attachment of osteoblasts on implants can be facilitated in order to promote implant osseointegration.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- 2. Institute of Bioengineering and Nanotechnology, Nanos, Singapore 138669, Singapore
| | - Shuangmu Zhuo
- 1. Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Ming Ni
- 3. Institute of Bioengineering and Nanotechnology, Nanos, Singapore 138669, Singapore
| |
Collapse
|
20
|
Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:158-65. [DOI: 10.1016/j.msec.2014.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
|
21
|
Lee WH, Loo CY, Chrzanowski W, Rohanizadeh R. Osteoblast response to the surface of amino acid-functionalized hydroxyapatite. J Biomed Mater Res A 2014; 103:2150-60. [DOI: 10.1002/jbm.a.35353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Wing-Hin Lee
- Advanced Drug Delivery Group; Faculty of Pharmacy, University of Sydney; NSW 2006 Australia
- Respiratory Technology; Woolcock Institute of Medical Research; NSW 2006 Australia
| | - Ching-Yee Loo
- Advanced Drug Delivery Group; Faculty of Pharmacy, University of Sydney; NSW 2006 Australia
- Respiratory Technology; Woolcock Institute of Medical Research; NSW 2006 Australia
| | - Wojciech Chrzanowski
- Advanced Drug Delivery Group; Faculty of Pharmacy, University of Sydney; NSW 2006 Australia
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Ramin Rohanizadeh
- Advanced Drug Delivery Group; Faculty of Pharmacy, University of Sydney; NSW 2006 Australia
| |
Collapse
|
22
|
Lee WH, Loo CY, Rohanizadeh R. A review of chemical surface modification of bioceramics: Effects on protein adsorption and cellular response. Colloids Surf B Biointerfaces 2014; 122:823-834. [DOI: 10.1016/j.colsurfb.2014.07.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/23/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022]
|
23
|
Liao C, Xie Y, Zhou J. Computer simulations of fibronectin adsorption on hydroxyapatite surfaces. RSC Adv 2014. [DOI: 10.1039/c3ra47381c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Lee WH, Loo CY, Zavgorodniy AV, Ghadiri M, Rohanizadeh R. A novel approach to enhance protein adsorption and cell proliferation on hydroxyapatite: citric acid treatment. RSC Adv 2013. [DOI: 10.1039/c3ra22966a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|