1
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Zhang X, Wu L, Feng G, Lei S. Mineralization of calcium phosphate on two-dimensional polymer films with controllable density of carboxyl groups. J Mater Chem B 2022; 10:3793-3797. [PMID: 35485398 DOI: 10.1039/d2tb00195k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional polymers functionalized with controllable density of carboxyl groups were constructed with the Langmuir-Blodgett method. Mineralization of calcium phosphate shows significantly different characteristics on these films, which clearly indicates that the density of carboxy groups plays a determining role in controlling the nucleation and orientated growth of calcium phosphate.
Collapse
Affiliation(s)
- Xinyu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730000, China.
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
3
|
Ghadhab S, Bilem I, Guay-Bégin AA, Chevallier P, Auger FA, Ruel J, Pauthe E, Laroche G. Fibronectin grafting to enhance skin sealing around transcutaneous titanium implant. J Biomed Mater Res A 2021; 109:2187-2198. [PMID: 33931940 DOI: 10.1002/jbm.a.37204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 11/08/2022]
Abstract
Intraosseous transcutaneous amputation prosthesis is a new approach in orthopedic implants that overcomes socket prosthesis problems. Its long-term performance requires a tight skin-implant seal to prevent infections. In this study, fibronectin (Fn), a widely used adhesion protein, was adsorbed or grafted onto titanium alloy. Fn grafting was performed using two different linking arms, dopamine/glutaric anhydride or phosphonate. The characterization of Fn-modified surfaces showed that Fn grating via phosphonate has led to the highest amount of Fn cell-binding site (RGD, arginine, glycine, and aspartate) available on the surface. Interestingly, cell culture studies revealed a strong correlation between the amount of available RGD ligands and cellular behavior, since enhanced proliferation and spreading of fibroblasts were noticed on Fn-grafted surfaces via phosphonate. In addition, an original in vitro mechanical test, inspired from the real situation, to better predict clinical outcomes after implant insertion, has been developed. Tensile test data showed that the adhesion strength of a bio-engineered dermal tissue was significantly higher around Fn-grafted surfaces via phosphonate, as compared to untreated surfaces. This study sheds light on the importance of an appropriate selection of the linking arm to tightly control the spatial conformation of biomolecules on the material surface, and consequently cell interactions at the interface tissue/implant.
Collapse
Affiliation(s)
- Souhaila Ghadhab
- Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada.,Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
| | - Ibrahim Bilem
- Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
| | - Andrée-Anne Guay-Bégin
- Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada.,Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
| | - François A Auger
- CHU de Québec-Université Laval, LOEX, Aile-R, 1401 18ième Rue, Québec, Québec, G1J 1Z4, Canada
| | - Jean Ruel
- Département de Génie mécanique, Université Laval, Québec, Canada
| | - Emmanuel Pauthe
- Biomaterials for Health Research Group, ERRMECe, Équipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), Cergy, France
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada.,Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Zhu Y, Wang C, Becker SA, Hurst K, Nogueira LM, Findlay VJ, Camp ER. miR-145 Antagonizes SNAI1-Mediated Stemness and Radiation Resistance in Colorectal Cancer. Mol Ther 2018; 26:744-754. [PMID: 29475734 PMCID: PMC5910672 DOI: 10.1016/j.ymthe.2017.12.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) has been closely linked with therapy resistance and cancer stem cells (CSCs). However, EMT pathways have proven challenging to therapeutically target. MicroRNA 145 (miR-145) targets multiple stem cell transcription factors and its expression is inversely correlated with EMT. Therefore, we hypothesized that miR-145 represents a therapeutic target to reverse snail family transcriptional repressor 1 (SNAI1)-mediated stemness and radiation resistance (RT). Stable expression of SNAI1 in DLD1 and HCT116 cells (DLD1-SNAI1; HCT116-SNAI1) increased expression of Nanog and decreased miR-145 expression compared to control cells. Using a miR-145 luciferase reporter assay, we determined that ectopic SNAI1 expression significantly repressed the miR-145 promoter. DLD1-SNAI1 and HCT116-SNAI1 cells demonstrated decreased RT sensitivity and, conversely, miR-145 replacement significantly enhanced RT sensitivity. Of the five parental colon cancer cell lines, SW620 cells demonstrated relatively high endogenous SNAI1 and low miR-145 levels. In the SW620 cells, miR-145 replacement decreased CSC-related transcription factor expression, spheroid formation, and radiation resistance. In rectal cancer patient-derived xenografts, CSC identified by EpCAM+/aldehyde dehydrogenase (ALDH)+ demonstrated high expression of SNAI1, c-Myc, and Nanog compared with non-CSCs (EpCAM+/ALDH-). Conversely, patient-derived CSCs demonstrated low miR-145 expression levels relative to non-CSCs. These results suggest that the SNAI1:miR-145 pathway represents a novel therapeutic target in colorectal cancer to overcome RT resistance.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Cindy Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Scott A Becker
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katie Hurst
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lourdes M Nogueira
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Victoria J Findlay
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - E Ramsay Camp
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Self-Assembled Monolayers for Dental Implants. Int J Dent 2018; 2018:4395460. [PMID: 29552036 PMCID: PMC5818935 DOI: 10.1155/2018/4395460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.
Collapse
|
6
|
Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
7
|
Fernández-Rodríguez M, Rodríguez-Valverde M, Cabrerizo-Vílchez M. Selective desorption of organophosphonates on chemically functionalized titanium by Direct Laser Patterning. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|