1
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
2
|
Tacchi F, Orozco-Aguilar J, Gutiérrez D, Simon F, Salazar J, Vilos C, Cabello-Verrugio C. Scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration. Nanomedicine (Lond) 2021; 16:2521-2538. [PMID: 34743611 DOI: 10.2217/nnm-2021-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle is integral to the functioning of the human body. Several pathological conditions, such as trauma (primary lesion) or genetic diseases such as Duchenne muscular dystrophy (DMD), can affect and impair its functions or exceed its regeneration capacity. Tissue engineering (TE) based on natural, synthetic and hybrid biomaterials provides a robust platform for developing scaffolds that promote skeletal muscle regeneration, strength recovery, vascularization and innervation. Recent 3D-cell printing technology and the use of nanocarriers for the release of drugs, peptides and antisense oligonucleotides support unique therapeutic alternatives. Here, the authors present recent advances in scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration and perspectives for future endeavors.
Collapse
Affiliation(s)
- Franco Tacchi
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Josué Orozco-Aguilar
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Danae Gutiérrez
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Felipe Simon
- Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD),Universidad de Chile, Santiago, 8370146, Chile.,Department of Biological Sciences, Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Javier Salazar
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Cristian Vilos
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Claudio Cabello-Verrugio
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| |
Collapse
|
3
|
Pascoal DRC, Velozo ES, Braga MEM, Sousa HC, Cabral-Albuquerque ECM, Vieira de Melo SAB. Bioactive compounds of Copaifera sp. impregnated into three-dimensional gelatin dressings. Drug Deliv Transl Res 2020; 10:1537-1551. [PMID: 32557352 DOI: 10.1007/s13346-020-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study investigates the immersion impregnation process of the copaiba oleoresin and leaf extract into SpongostanTM gelatin dressings to be used in wound healing treatment. Copaiba oleoresin and leaf extract were characterized by spectroscopic analyses in order to confirm the identity of bioactive compounds and their compatibility with dressing material. Their antibacterial properties were evaluated and oleoresin activity against Escherichia coli and Staphylococcus aureus bacteria was confirmed while the leaf extract showed activity against S. aureus. Solubility assays in organic solvents revealed that copaiba oleoresin is miscible into dichloromethane, while leaf extract showed a 20 g/ml solubility coefficient at 35 °C in the same solvent. These miscibility and solubility conditions were selected for the impregnation process. Using the organic solvent immersion method, 11 mg of copaiba oleoresin and 19 mg of leaf extract were impregnated into 1 cm3 of 3D matrix. The main bioactives from copaiba products, such as β-caryophyllene and lupeol, were tracked in the gelatin dressing. DSC and TGA assays showed no thermal changes in the samples after impregnation. Furthermore, the spatial organization of foam structure of the dressings was preserved after superficial distribution of oleoresin, as well as amorphous-like particulate deposition of leaf extract. The main compound of copaiba oleoresin, β-caryophyllene, which exhibits well-known anti-inflammatory activities, and the main compound of copaiba leaf extract, lupeol, also an anti-inflammatory agent, were successfully impregnated using organic solvent in wound dressings and are promising for further application on tissue wound healing. Graphical Abstract.
Collapse
Affiliation(s)
- Diego R C Pascoal
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis, 2, 6° andar, Federação, Salvador, Bahia, 40210-630, Brazil
| | - Eudes S Velozo
- Departamento de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Mara E M Braga
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Herminio C Sousa
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Elaine C M Cabral-Albuquerque
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis, 2, 6° andar, Federação, Salvador, Bahia, 40210-630, Brazil
| | - Silvio A B Vieira de Melo
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis, 2, 6° andar, Federação, Salvador, Bahia, 40210-630, Brazil. .,Centro Interdisciplinar em Energia e Ambiente, Campus Universitário da Federação/Ondina, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
4
|
Traverso G, Kirtane AR, Schoellhammer CM, Langer R. Translation durch Konvergenz: Drug-Delivery-Forschung in multidisziplinären Teams. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital; Harvard Medical School; Boston MA 02115 USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Ameya R. Kirtane
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | | | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
5
|
Traverso G, Kirtane AR, Schoellhammer CM, Langer R. Convergence for Translation: Drug-Delivery Research in Multidisciplinary Teams. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201712512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital; Harvard Medical School; Boston MA 02115 USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Ameya R. Kirtane
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | | | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
6
|
Li P, Yue GGL, Kwok HF, Long CL, Lau CBS, Kennelly EJ. Using Ultra-Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry-Based Chemometrics for the Identification of Anti-angiogenic Biflavonoids from Edible Garcinia Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8348-8355. [PMID: 28926234 DOI: 10.1021/acs.jafc.7b02867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Garcinia xanthochymus fruits are edible and also used in traditional medicine. Our previous work showed that the isolated natural products from G. xanthochymus fruits have displayed antioxidant activity and cytotoxicity in the colon cancer cells. In this study, we developed a strategy to correlate a zebrafish angiogenesis assay with ultra-performance liquid chromatography quadrupole time of flight mass spectrometry-based chemometric analysis to identify potential anti-angiogenic activity compounds from G. xanthochymus fruits. Primary bioactivity results showed that the methanolic extracts from aril and pericarp but not from seed have significant inhibitory effects on the growth of subintestinal vessels (SIVs) in zebrafish embryos. A total of 13 markers, including benzophenones and biflavonoids, were predicted by untargeted principal component analysis and orthogonal partial least squares discriminate analysis, which were tentatively identified as priority markers for the bioactivity related in aril and pericarp. Amentoflavone, a biflavonoid, has been found to significantly inhibit the growth of SIVs at 10 and 20 μM and downregulate the expressions of Angpt2 and Tie2 genes of zebrafish embryos. Furthermore, seven biflavonoids, volkensiflavone, fukugetin, fukugeside, GB 1a, GB 1a glucoside, GB 2a, and GB 2a glucoside, isolated from Garcinia species were evaluated for their structure-activity relationship using the zebrafish model. Only fukugetin, which was previously shown to be anticancer, was active in inhibiting the SIV growth. In this report, both amentoflavone and fukugetin, for the first time, displayed anti-angiogenic effects on zebrafish, thus demonstrating an effective and rapid strategy to identify natural products for anti-angiogenesis activity.
Collapse
Affiliation(s)
- Ping Li
- College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, People's Republic of China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | | | | | - Chun-Lin Long
- College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, People's Republic of China
- Kunming Institute of Botany, Chinese Academy of Sciences , Kunming, Yunnan 650201, People's Republic of China
| | | | - Edward J Kennelly
- College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, People's Republic of China
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York , New York City, New York 10468, United States
| |
Collapse
|
7
|
Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release 2017; 262:284-295. [DOI: 10.1016/j.jconrel.2017.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
8
|
Herrera VL, Colby AH, Tan GA, Moran AM, O'Brien MJ, Colson YL, Ruiz-Opazo N, Grinstaff MW. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis. Nanomedicine (Lond) 2016; 11:1001-15. [PMID: 27078118 DOI: 10.2217/nnm-2015-0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. METHODS & MATERIALS A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. RESULTS The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. CONCLUSION eNPs are a promising tool for the detection and treatment of PPC.
Collapse
Affiliation(s)
- Victoria Lm Herrera
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron H Colby
- Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| | - Glaiza Al Tan
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ann M Moran
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J O'Brien
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Nelson Ruiz-Opazo
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark W Grinstaff
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.,Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles. Sci Rep 2016; 6:18720. [PMID: 26740245 PMCID: PMC4703988 DOI: 10.1038/srep18720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.
Collapse
|
10
|
Abstract
Materials chemistry has been fundamental to the enormous field that encompasses the delivery of molecules both to desired sites and/or at desired rates and durations. The field encompasses the delivery of molecules including fertilizers, pesticides, herbicides, food ingredients, fragrances and biopharmaceuticals. A personal perspective is provided on our early work in this field that has enabled the controlled release of ionic substances and macromolecules. Also discussed are new paradigms in creating biomaterials for human use, the non-invasive delivery of molecules through the skin and lungs, the development of intelligent delivery systems and extensions to nanomedicine. With the advent of potentially newer biopharmaceutics such as siRNA, mRNA and gene editing approaches and their use being limited by delivery, future research in this field may be more critical than ever before.
Collapse
|
11
|
Physicochemical perspective on "polydopamine" and "poly(catecholamine)" films for their applications in biomaterial coatings. Biointerphases 2015; 9:030801. [PMID: 25280841 DOI: 10.1116/1.4875115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bioinspired poly(catecholamine) based coatings, mostly "polydopamine," were conceived based on the chemistry used by mussels to adhere strongly to the surface of stones and wood in water and to remain attached to their substrates even under conditions of strong shear stresses. These kinds of films can in turn be easily modified with a plethora of molecules and inorganic (nano)materials. This review shows that poly(catecholamine) based coatings are an ideal film forming method for applications in the field of biomaterials. It is written from a physicochemical and a materials science perspective and discusses optical, chemical, electrochemical, and mechanical properties of polydopamine films. It further demonstrates that a better understanding of the polydopamine film deposition mechanism is warranted to improve the properties of these coatings even further.
Collapse
|
12
|
In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:372-7. [DOI: 10.1016/j.msec.2014.12.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/22/2014] [Accepted: 12/05/2014] [Indexed: 11/21/2022]
|
13
|
Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015; 6:S45-58. [PMID: 25722933 PMCID: PMC4338483 DOI: 10.4103/2152-7806.151334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023] Open
Abstract
Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
Collapse
Affiliation(s)
- Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
14
|
Pérez-Madrigal MM, Armelin E, Puiggalí J, Alemán C. Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. J Mater Chem B 2015; 3:5904-5932. [DOI: 10.1039/c5tb00624d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free-standing nanomembranes, which are emerging as versatile elements in biomedical applications, are evolving from being composed of insulating (bio)polymers to electroactive conducting polymers.
Collapse
Affiliation(s)
- Maria M. Pérez-Madrigal
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| |
Collapse
|
15
|
Langer RS. Guest Editorial: Prologue. Isr J Chem 2013. [DOI: 10.1002/ijch.201310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|