1
|
Migliorini F, Eschweiler J, Betsch M, Maffulli N, Tingart M, Hildebrand F, Lecouturier S, Rath B, Schenker H. Osteointegration of functionalised high-performance oxide ceramics: imaging from micro-computed tomography. J Orthop Surg Res 2024; 19:411. [PMID: 39026349 PMCID: PMC11256426 DOI: 10.1186/s13018-024-04918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/13/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND This study evaluated the osseointegration potential of functionalised high-performance oxide ceramics (HPOC) in isolation or coated with BMP-2 or RGD peptides in 36 New Zeeland female rabbits using micro-computed tomography (micro CT). The primary outcomes of interest were to assess the amount of ossification evaluating the improvement in the bone volume/ total volume (BV/TV) ratio and trabecular thickness at 6 and 12 weeks. The second outcome of interest was to investigate possible differences in osteointegration between the functionalised silanised HPOC in isolation or coated with Bone Morphogenetic Protein 2 (BMP-2) or RGD peptides. METHODS 36 adult female New Zealand white rabbits with a minimum weight of three kg were used. One-third of HPOCs were functionalised with silicon suboxide (SiOx), a third with BMP-2 (sHPOC-BMP2), and another third with RGD (sHPOC-RGD). All samples were scanned with a high-resolution micro CT (U-CTHR, MILabs B.V., Houten, The Netherlands) with a reconstructed voxel resolution of 10 µm. MicroCT scans were reconstructed in three planes and processed using Imalytics Preclinical version 2.1 (Gremse-IT GmbH, Aachen, Germany) software. The total volume (TV), bone volume (BV) and ratio BV/TV were calculated within the coating area. RESULTS BV/TV increased significantly from 6 to 12 weeks in all HPOCs: silanised (P = 0.01), BMP-2 (P < 0.0001), and RGD (P < 0.0001) groups. At 12 weeks, the BMP-2 groups demonstrated greater ossification in the RGD (P < 0.0001) and silanised (P = 0.008) groups. Trabecular thickness increased significantly from 6 to 12 weeks (P < 0.0001). At 12 weeks, BMP-2 promoted greater trabecular thickness compared to the silanised group (P = 0.07), although no difference was found with the RGD (P = 0.1) group. CONCLUSION Sinalised HPOC in isolation or functionalised with BMP-2 or RGD promotes in vivo osteointegration. The sinalised HOPC functionalised with BMP-2 demonstrated the greatest osseointegration.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marcel Betsch
- Department of Orthopaedic and Trauma Surgery, University Hospital of Erlangen, 91054, Erlangen, Germany
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy.
- Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, ST4 7QB, Stoke On Trent, England.
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, E1 4DG, London, England.
| | | | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Lecouturier
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Björn Rath
- Department of Orthopaedic Surgery, Klinikum Wels-Grieskirchen, 4600, Wels, Austria
| | - Hanno Schenker
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
2
|
de Souza AM, Dantas MRDN, Secundo EL, Silva EDC, Silva PF, Moreira SMG, de Medeiros SRB. Are hydroxyapatite-based biomaterials free of genotoxicity? A systematic review. CHEMOSPHERE 2024; 352:141383. [PMID: 38360416 DOI: 10.1016/j.chemosphere.2024.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in clinical applications and pharmaceuticals. The literature on HA-based materials studies is focused on chemical characterization and biocompatibility. Generally, biocompatibility is analyzed through adhesion, proliferation, and differentiation assays. Fewer studies are looking for genotoxic events. Thus, although HA-based biomaterials are widely used as biomedical devices, there is a lack of literature regarding their genotoxicity. This systematic review was carried out following the PRISMA statement. Specific search strategies were developed and performed in four electronic databases (PubMed, Science Direct, Scopus, and Web of Science). The search used "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND genotoxicity OR genotoxic OR DNA damage" and "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND mutagenicity OR mutagenic OR DNA damage" as keywords and articles published from 2000 to 2022, after removing duplicate studies and apply include and exclusion criteria, 53 articles were identified and submitted to a qualitative descriptive analysis. Most of the assays were in vitro and most of the studies did not show genotoxicity. In fact, a protective effect was observed for hydroxyapatites. Only 20 out of 71 tests performed were positive for genotoxicity. However, no point mutation-related mutagenicity was observed. As the genotoxicity of HA-based biomaterials observed was correlated with its nanostructured forms as needles or rods, it is important to follow their effect in chronic exposure to guarantee safe usage in humans.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Estefânia Lins Secundo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila Fernandes Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
3
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS 2019; 12:ma12223704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
- Correspondence:
| |
Collapse
|
4
|
Bendo Demétrio K, Giotti Cioato MJ, Moreschi A, Oliveira GA, Lorenzi W, Hehn de Oliveira F, Vieira de Macedo Neto A, Stefani Sanches PR, Xavier RG, Loureiro dos Santos LA. Polydimethylsiloxane/nano calcium phosphate composite tracheal stents: Mechanical and physiological properties. J Biomed Mater Res B Appl Biomater 2018; 107:545-553. [DOI: 10.1002/jbm.b.34145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Kétner Bendo Demétrio
- PPGCEM, Post-Graduate Program in Science and Engineering Materials; UNESC-University of the South of Santa Catarina; Criciúma SC Brazil
| | | | - Alexandre Moreschi
- HCPA, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul; Porto Alegre RS Brazil
| | | | - William Lorenzi
- HCPA, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul; Porto Alegre RS Brazil
| | | | | | | | - Rogerio Gastal Xavier
- HCPA, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul; Porto Alegre RS Brazil
| | - Luís Alberto Loureiro dos Santos
- LABIOMAT, Laboratory of Biomaterials, Department of Materials; Federal University of Rio Grande do Sul, UFRGS; Porto Alegre RS Brazil
| |
Collapse
|
5
|
Jin Y, Chen S, Li N, Liu Y, Cheng G, Zhang C, Wang S, Zhang J. Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways. SCIENCE CHINA-LIFE SCIENCES 2018; 61:464-475. [PMID: 29623549 DOI: 10.1007/s11427-017-9258-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
When orthopedic joints coated by hydroxyapatite (HA) were implanted in the human body, they release wear debris into the surrounding tissues. The generation and accumulation of wear particles will induce aseptic loosening. However, the potential bioeffect and mechanism of HA-coated orthopedic implants on bone cells are poorly understood. In this study, defect-related luminescent bur-like hydroxyapatite (BHA) microspheres with the average diameter of 7-9 μm which are comparable to that of the wear-debris particles from aseptically loosened HA implants or HA debris have been synthesized by hydrothermal synthesis and the MC3T3-E1 cells were set as a cells model to study the potential bioeffect and mechanism of BHA microspheres. The studies demonstrated that BHA microspheres could be taken into MC3T3-E1 cells via endocytosis involved in micropinocytosis- and clathrin-mediated endocytosis process, and exert cytotoxicity effect. BHA microspheres could induce the cell apoptosis by intracellular production of reactive oxygen species (ROS), which led to not only an increase in the permeability of lysosome and release of cathepsins B, but also mitochondrial dysfunction and DNA damage. Our results provide novel evidence to elucidate their toxicity mechanisms and might be helpful for more reasonable applications of HA-based orthopaedic implants in the future.
Collapse
Affiliation(s)
- Yi Jin
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
- Medical College of Hebei University, Baoding, 071000, China
| | - Shizhu Chen
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Nan Li
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yajing Liu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Gong Cheng
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Cuimiao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
6
|
Yamamura H, da Silva VHP, Ruiz PLM, Ussui V, Lazar DRR, Renno ACM, Ribeiro DA. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J Mech Behav Biomed Mater 2018; 80:137-142. [PMID: 29414469 DOI: 10.1016/j.jmbbm.2018.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/07/2018] [Accepted: 01/29/2018] [Indexed: 01/28/2023]
Abstract
The aim of this study was to synthesize hydroxyapatite (HAP) powder from fish waste. The powder was characterized through X-ray diffraction, Fourier transform infrared spectroscopy, ion exchange chromatography, scanning electron microscopy and plasma emission spectrometry. The cyto- and genotoxicity was carried out to demonstrate biocompatibility in vivo by means of rat subcutaneous tissue test. The results showed that the visible crystalline nature of typical apatite crystal structure when they were calcined at 800 °C. Infrared spectroscopy analysis showed similar composition to HAP standard with the presence of carbonate ion demonstrated by wave number values of 871 cm-1 and 1420 cm-1 for calcinations at 800 °C. The scanning electronmicrographies depicted the crystal morphology and porous nature with average pore size of ~10 µm. Plasma emission spectrometry and ion exchange chromatography confirmed the presence of Ca and P in the samples. The mean of calcium content was 36.8; Mg was 0.8, Na was 0.7 and K was 0.5. Rat subcutaneous tissue test revealed that HAP presented biocompatibility. Furthermore, the lack of cyto- and genotoxicity in blood, liver, kidney and lung were noticed after 30 days of HAP implantation. Taken together, our results demonstrated that HAP from fish waste exhibits a great potential for using as biomaterial since is represents a simple, effective, low-cost process and satisfactory degree of biocompatibility.
Collapse
Affiliation(s)
- Hirochi Yamamura
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Pedro Luiz Menin Ruiz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Valter Ussui
- Nuclear and Energy Research Institute, IPEN, Sao Paulo, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil.
| |
Collapse
|
7
|
Bone response to porous alumina implants coated with bioactive materials, observed using different characterization techniques. J Appl Biomater Funct Mater 2017; 15:e223-e235. [PMID: 28574101 PMCID: PMC6379886 DOI: 10.5301/jabfm.5000347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 01/16/2023] Open
Abstract
Background Implants or implantable devices should integrate into the host tissue faster
than fibrous capsule formation, in which the design of the interface is one
of the biggest challenges. Generally, bioactive materials are not viable for
load-bearing applications, so inert biomaterials are proposed. However, the
surface must be modified through techniques such as coating with bioactive
materials, roughness and sized pores. The aim of this research was to
validate an approach for the evaluation of the tissue growth on implants of
porous alumina coated with bioactive materials. Methods Porous alumina implants were coated with 45S5 Bioglass® (BG) and
hydroxyapatite (HA) and implanted in rat tibiae for a period of 28 days. Ex
vivo resections were performed to analyze osseointegration, along with
histological analysis, Scanning Electron Microscopy with Energy Dispersive
X-Ray spectroscopy (SEM-EDX) line scanning, radiography and biomechanical
testing. Results Given that the process of implant integration needs with the bone tissue to
be accelerated, it was then seen that BG acted to start the rapid
integration, and HA acted to sustaining the process. Conclusions Inert materials coated with bioglass and HA present a potential for
application as bone substitutes, preferably with pores of diameters between
100 μm and 400 μm and, restrict for smaller than 100 μm, because it prevents
pores without organized tissue formation or vacant. Designed as functional
gradient material, stand out for applications in bone tissue under load,
where, being the porous surface responsible for the osseointegration and the
inner material to bear and to transmit the loads.
Collapse
|
8
|
Gorbunova M, Lemkina L, Lebedeva I, Kisel'kov D, Chekanova L. Synthesis and potential applications of silver-porous aluminium oxide nanocomposites as prospective antiseptics and bactericides. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:40. [PMID: 28144852 DOI: 10.1007/s10856-016-5841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Alumina micro-spheres with mesoporous structure called porous aluminium oxide (POA) were prepared through a hydrothermal method using Al2(SO4)3·18H2O followed by a thermal decomposition process. Silver nanocomposites of POA (Ag/POAs) with high biochemical activity were synthesized by sorption of silver nanoparticles in the matrix of POA. Synthesis of Ag/POAs using photochemical reduction enables the producing silver nanoparticles preventing their aggregation. Ag/POAs demonstrated a stronger bactericidal activity than POA. The colony-forming ability of Escherichia coli was completely lost in 1 day on Ag/POAs at silver nanoparticles concentration of 0.241 ppm. Staphylococcus epidermidis displayed higher tolerance to Ag/POAs at all silver nanoparticles concentrations, the growth of Staphylococcus epidermidis was stopped at concentration of 0.374 ppm. The bactericidal activity of Ag/POAs against bacteria in drinking water was found to be highly effective, the growth of bacteria was completely lost in 1 day at silver nanoparticles concentration of 0.108 ppm.
Collapse
Affiliation(s)
- Marina Gorbunova
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Korolev str., 3, Perm, 614013, Russia.
| | - Larisa Lemkina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, Lenin str., 11, Perm, 614090, Russia
| | - Irina Lebedeva
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Korolev str., 3, Perm, 614013, Russia
| | - Dmitriy Kisel'kov
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Korolev str., 3, Perm, 614013, Russia
| | - Larisa Chekanova
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Korolev str., 3, Perm, 614013, Russia
| |
Collapse
|
9
|
Böke F, Giner I, Keller A, Grundmeier G, Fischer H. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD). ACS APPLIED MATERIALS & INTERFACES 2016; 8:17805-17816. [PMID: 27299181 DOI: 10.1021/acsami.6b04421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous solutions.
Collapse
Affiliation(s)
- Frederik Böke
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ignacio Giner
- Technical and Macromolecular Chemistry, University of Paderborn , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, University of Paderborn , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, University of Paderborn , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital , Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
10
|
Paschalis EI, Eliott D, Vavvas DG. Removal of Silicone Oil From Intraocular Lens Using Novel Surgical Materials. Transl Vis Sci Technol 2014; 3:4. [PMID: 25237593 DOI: 10.1167/tvst.3.5.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/18/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To design, fabricate, and evaluate novel materials to remove silicone oil (SiO) droplets from intraocular lenses (IOL) during vitreoretinal surgery. METHODS Three different designs were fabricated using soft lithography of polydimethylsiloxane (PDMS), three-dimensional (3D) inverse PDMS fabrication using water dissolvable particles, and atomic layer deposition (ALD) of alumina (Al2O3) on surgical cellulose fibers. Laboratory tests included static and dynamic contact angle (CA) measurements with water and SiO, nondestructive x-ray microcomputer tomography (micro-CT), and microscopy. SiO removal was performed in vitro and ex vivo using implantable IOLs and explanted porcine eyes. RESULTS All designs exhibited enhanced hydrophobicity and oleophilicity. Static CA measurements with water ranged from 131° to 160° and with SiO CA approximately 0° in 120 seconds following exposure. Nondestructive x-ray analysis of the 3D PDMS showed presence of interconnected polydispersed porosity of 100 to 300 μm in diameter. SiO removal from IOLs was achieved in vitro and ex vivo using standard 20-G vitrectomy instrumentation. CONCLUSION Removal of SiO from IOLs can be achieved using materials with lower surface energy than that of the IOLs. This can be achieved using appropriate surface chemistry and surface topography. Three designs, with enhanced hydrophobic properties, were fabricated and tested in vitro and ex vivo. All materials remove SiO within an aqueous environment. Preliminary ex vivo results were very promising, opening new possibilities for SiO removal in vitreoretinal surgeries. TRANSLATIONAL RELEVANCE This is the first report of an instrument that can lead to successful removal of SiO from the surface of IOL. In addition to the use of this instrument/material in medicine it can also be used in the industry, for example, retrieval of oil spills from bodies of water.
Collapse
Affiliation(s)
- Eleftherios I Paschalis
- Department of Ophthalmology, Boston Keratoprosthesis Laboratory and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Dean Eliott
- Department of Ophthalmology, Boston Keratoprosthesis Laboratory and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Boston Keratoprosthesis Laboratory and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| |
Collapse
|