1
|
Atya AMN, Tevlek A, Almemar M, Gökcen D, Aydin HM. Fabrication and characterization of carbon aerogel/poly(glycerol-sebacate) patches for cardiac tissue engineering. Biomed Mater 2021; 16. [PMID: 34619670 DOI: 10.1088/1748-605x/ac2dd3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) are responsible for the major number of deaths around the world. Among these is heart failure after myocardial infarction whose latest therapeutic methods are limited to slowing the end-state progression. Numerous strategies have been developed to meet the increased demand for therapies regarding CVDs. This study aimed to establish a novel electrically conductive elastomer-based composite and assess its potential as a cardiac patch for myocardial tissue engineering. The electrically conductive carbon aerogels (CAs) used in this study were derived from waste paper as a cost-effective carbon source and they were combined with the biodegradable poly(glycerol-sebacate) (PGS) elastomer to obtain an electrically conductive cardiac patch material. To the best of our knowledge, this is the first report about the conductive composites obtained by the incorporation of CAs into PGS (CA-PGS). In this context, the incorporation of the CAs into the polymeric matrix significantly improved the elastic modulus (from 0.912 MPa for the pure PGS elastomer to 0.366 MPa for the CA-PGS) and the deformability (from 0.792 MPa for the pure PGS to 0.566 MPa for CA-PGS). Overall, the mechanical properties of the obtained structures were observed similar to the native myocardium. Furthermore, the addition of CAs made the obtained structures electrically conductive with a conductivity value of 65 × 10-3S m-1which falls within the range previously recorded for human myocardium. Thein vitrocytotoxicity assay with L929 murine fibroblast cells revealed that the CA-PGS composite did not have cytotoxic characteristics. On the other hand, the studies conducted with H9C2 rat cardiac myoblasts revealed that final structures were suitable for MTE applications according to the successes in cell adhesion, cell proliferation, and cell behavior.
Collapse
Affiliation(s)
- Abdulraheem M N Atya
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Atakan Tevlek
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Muhannad Almemar
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Dincer Gökcen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey.,Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Trombino S, Curcio F, Cassano R, Curcio M, Cirillo G, Iemma F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021; 13:1038. [PMID: 34371729 PMCID: PMC8309168 DOI: 10.3390/pharmaceutics13071038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.
Collapse
Affiliation(s)
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | | | | |
Collapse
|
3
|
Vannozzi L, Gouveia P, Pingue P, Canale C, Ricotti L. Novel Ultrathin Films Based on a Blend of PEG- b-PCL and PLLA and Doped with ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21398-21410. [PMID: 32302103 DOI: 10.1021/acsami.0c00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper, a novel nanofilm type is proposed based on a blend of poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-b-PCL) and poly(l-lactic acid), doped with zinc oxide nanoparticles (ZnO NPs) at different concentrations (0.1, 1, and 10 mg/mL). All nanofilm types were featured by a thickness value of ∼500 nm. Increasing ZnO NP concentrations implied larger roughness values (∼22 nm for the bare nanofilm and ∼67 nm for the films with 10 mg/mL of NPs), larger piezoelectricity (average d33 coefficient for the film up to ∼1.98 pm/V), and elastic modulus: the nanofilms doped with 1 and 10 mg/mL of NPs were much stiffer than the nondoped controls and nanofilms doped with 0.1 mg/mL of NPs. The ZnO NP content was also directly proportional to the material melting point and crystallinity and inversely proportional to the material degradation rate, thus highlighting the stabilization role of ZnO particles. In vitro tests were carried out with cells of the musculoskeletal apparatus (fibroblasts, osteoblasts, chondrocytes, and myoblasts). All cell types showed good adhesion and viability on all substrate formulations. Interestingly, a higher content of ZnO NPs in the matrix demonstrated higher bioactivity, boosting the metabolic activity of fibroblasts, myoblasts, and chondrocytes and enhancing the osteogenic and myogenic differentiation. These findings demonstrated the potential of these nanocomposite matrices for regenerative medicine applications, such as tissue engineering.
Collapse
Affiliation(s)
- Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
| | - Pedro Gouveia
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin D02 YN77, Ireland
| | - Pasqualantonio Pingue
- NEST, Scuola Normale Superiore and CNR Istituto Nanoscienze, Piazza San Silvestro 12, 56127 Pisa (PI), Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
| |
Collapse
|
4
|
Slepička P, Siegel J, Lyutakov O, Slepičková Kasálková N, Kolská Z, Bačáková L, Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol Adv 2018; 36:839-855. [DOI: 10.1016/j.biotechadv.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023]
|
5
|
Criado M, Sanz B, Goya GF, Mijangos C, Hernández R. Magnetically responsive biopolymeric multilayer films for local hyperthermia. J Mater Chem B 2017; 5:8570-8578. [PMID: 32264525 DOI: 10.1039/c7tb02361h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present a proof of concept on the use of thermomagnetic polymer films (TMFs) as heating devices for magnetic hyperthermia in vitro. The TMFs were prepared through spray assisted layer-by-layer assembly of polysaccharides and magnetic iron oxide nanoparticles, yielding an alternate magnetic-polymer multilayer structure. By applying a remote alternating magnetic field (AMF) (f = 180 kHz; H = 35 kA m-1) we increased the temperature of the TMFs in a thickness-dependent way, up to 12 °C within the first 5 minutes. To test our films as heating substrates for magnetic hyperthermia, a series of in vitro experiments were designed using human neuroblastoma SH-SY5Y cells, known by their tolerance to thermal stress. The application of two AMF cycles (30 minutes each) showed that the exogenous magnetic hyperthermia resulted in an 85% reduction of cell viability. This capacity of the TMFs of hyperthermia-mediated cell killing using a remote AMF opens new options for the treatment of small and superficial tumor lesions by means of remotely-triggered magnetic hyperthermia.
Collapse
Affiliation(s)
- M Criado
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
6
|
Singh R, Wieser A, Reakasame S, Detsch R, Dietel B, Alexiou C, Boccaccini AR, Cicha I. Cell specificity of magnetic cell seeding approach to hydrogel colonization. J Biomed Mater Res A 2017. [PMID: 28639348 DOI: 10.1002/jbm.a.36147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue-engineered scaffolds require an effective colonization with cells. Superparamagnetic iron oxide nanoparticles (SPIONs) can enhance cell adhesion to matrices by magnetic cell seeding. We investigated the possibility of improving cell attachment and growth on different alginate-based hydrogels using fibroblasts and endothelial cells (ECs) loaded with SPIONs. Hydrogels containing pure alginate (Alg), alginate dialdehyde crosslinked with gelatin (ADA-G) and Alg blended with G or silk fibroin (SF) were prepared. Endothelial cells and fibroblasts loaded with SPIONs were seeded and grown on hydrogels for up to 7 days, in the presence of magnetic field during the first 24 h. Cell morphology (fluorescent staining) and metabolic activity (WST-8 assay) of magnetically-seeded versus conventionally seeded cells were compared. Magnetic seeding of ECs improved their initial attachment and further growth on Alg/G hydrogel surfaces. However, we did not achieve an efficient and stable colonization of ADA-G films with ECs even with magnetic cell seeding. Fibroblast showed good initial colonization and growth on ADA-G and on Alg/SF. This effect was further significantly enhanced by magnetic cell seeding. On pure Alg, initial attachment and spreading of magnetically-seeded cells was dramatically improved compared to conventionally-seeded cells, but the effect was transient and diminished gradually with the cessation of magnetic force. Our results demonstrate that magnetic seeding improves the strength and uniformity of initial cell attachment to hydrogel surface in cell-specific manner, which may play a decisive role for the outcome in tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2948-2956, 2017.
Collapse
Affiliation(s)
- Raminder Singh
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Cardiology and Angiology, University Hospital Erlangen, Erlangen, Germany
| | - Anna Wieser
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Supachai Reakasame
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Taccola S, Pensabene V, Fujie T, Takeoka S, Pugno NM, Mattoli V. On the injectability of free-standing magnetic nanofilms. Biomed Microdevices 2017; 19:51. [DOI: 10.1007/s10544-017-0192-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Gao Y, Hassanbhai AM, Lim J, Wang L, Xu C. Fabrication of a silver octahedral nanoparticle-containing polycaprolactone nanocomposite for antibacterial bone scaffolds. RSC Adv 2017. [DOI: 10.1039/c6ra26063b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag octahedral nanoparticle-containing PCL nanocomposite scaffolds exhibit successful osteogenic differentiation of stem cells and localized antibacterial effects.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | | | - Jing Lim
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- NTU-Northwestern Institute for Nanomedicine
- Nanyang Technological University
| |
Collapse
|
9
|
Kehr NS, Motealleh A, Schäfer AH. Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35081-35090. [PMID: 27966873 DOI: 10.1021/acsami.6b13667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.
Collapse
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| | - Andisheh Motealleh
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| | | |
Collapse
|
10
|
Criado M, Rebollar E, Nogales A, Ezquerra TA, Boulmedais F, Mijangos C, Hernández R. Quantitative Nanomechanical Properties of Multilayer Films Made of Polysaccharides through Spray Assisted Layer-by-Layer Assembly. Biomacromolecules 2016; 18:169-177. [PMID: 27976857 DOI: 10.1021/acs.biomac.6b01449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.
Collapse
Affiliation(s)
- Miryam Criado
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC , Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Rebollar
- Instituto de Química Física Rocasolano, IQFR-CSIC , Serrano 119, 28006 Madrid, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC , Serrano 121, 28006 Madrid, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC , Serrano 121, 28006 Madrid, Spain
| | - Fouzia Boulmedais
- Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg , 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC , Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC , Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
11
|
Matsuno H, Matsuyama R, Yamamoto A, Tanaka K. Enhanced cellular affinity for poly(lactic acid) surfaces modified with titanium oxide. Polym J 2015. [DOI: 10.1038/pj.2015.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Kehr NS, Atay S, Ergün B. Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromol Biosci 2014; 15:445-63. [DOI: 10.1002/mabi.201400363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Seda Atay
- Department of Nanotechnology and Nanomedicine; Hacettepe University; 06800 Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| |
Collapse
|