1
|
Beltrame JM, Guindani C, Novy MG, Felipe KB, Sayer C, Pedrosa RC, Hermes de Araújo PH. Covalently Bonded N-Acetylcysteine-polyester Loaded in PCL Scaffolds for Enhanced Interactions with Fibroblasts. ACS APPLIED BIO MATERIALS 2021; 4:1552-1562. [DOI: 10.1021/acsabm.0c01404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeovandro Maria Beltrame
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC, C.P. 476, CEP 88040-900 Florianópolis, SC, Brazil
| | - Camila Guindani
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC, C.P. 476, CEP 88040-900 Florianópolis, SC, Brazil
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, Rio de Janeiro, RJ 21941-972, Brazil
| | - Mara Gabriela Novy
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC, C.P. 476, CEP 88040-900 Florianópolis, SC, Brazil
| | - Karina Bettega Felipe
- Laboratory of Physiology and Cell Signaling, Department of Clinic Analysis, Federal University of Paraná, DAC/UFPR, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR 80210-170, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC, C.P. 476, CEP 88040-900 Florianópolis, SC, Brazil
| | - Rozangela Curi Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina CCB/UFSC, R. João Pio Duarte Silva, 241, Córrego
Grande, Florianópolis, SC 88037-000, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC, C.P. 476, CEP 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Effect of surface potential on epithelial cell adhesion, proliferation and morphology. Colloids Surf B Biointerfaces 2016; 141:179-186. [DOI: 10.1016/j.colsurfb.2016.01.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 01/26/2016] [Indexed: 11/22/2022]
|
3
|
Rana D, Ramasamy K, Leena M, Jiménez C, Campos J, Ibarra P, Haidar ZS, Ramalingam M. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol Prog 2016; 32:554-67. [DOI: 10.1002/btpr.2262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Deepti Rana
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
| | - Keerthana Ramasamy
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
| | - Maria Leena
- Dept. of Nanoscience and Technology; Karunya University; Coimbatore 641114 India
| | - Constanza Jiménez
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Centro De Investigación Biomédica (CIB), Facultad De Medicina; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
| | - Javier Campos
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Paula Ibarra
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Ziyad S. Haidar
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Murugan Ramalingam
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
- WPI-Advanced Institute for Materials Research, Tohoku University; Sendai 980-8577 Japan
| |
Collapse
|
4
|
Wang Y, Ji Y, Zhao Y, Kong Y, Gao M, Feng Q, Wu Y, Yang Y. Effects of surface functional groups on proliferation and biofunction of Schwann cells. J Biomater Appl 2016; 30:1494-504. [DOI: 10.1177/0885328216628785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Scaffolds in tissue engineering should be rationally designed to become an adhesion substrate friendly to cells. Schwann cells play an important role in nerve regeneration and repair. Previous studies have suggested that surface chemical groups have effect on many types of cells. However, there have hitherto been few reports on Schwann cells. In this study, we investigated cell adhesion, survival, proliferation, and neurotrophic actions of Schwann cells cultured on glass coverslips modified with different chemical groups, including methyl, carboxyl, amino, hydroxyl, mercapto, and sulfonic groups. Schwann cells on amino and carboxyl surfaces had higher attachment rate, presenting good morphology, high proliferation, and strong neurotrophic functions, while on methyl surfaces, few cells can survive, cells shrunk into round shape, exhibiting poor proliferation and weak neurotrophic functions. Growth of cells on other groups was between methyl and amino, carboxyl, and had little difference among them. Our data indicated that chemical groups can regulate behavior of Schwann cells, indicating a way to design new scaffolds for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yaling Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, P. R. China
| | - Yawei Ji
- Department of cardiology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Yahong Zhao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yan Kong
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Ming Gao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Qilin Feng
- School of Medical, Nantong University, Nantong, P. R. China
| | - Yue Wu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yumin Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| |
Collapse
|
5
|
Wang Y, Yao S, Meng Q, Yu X, Wang X, Cui F. Gene expression profiling and mechanism study of neural stem cells response to surface chemistry. Regen Biomater 2014; 1:37-47. [PMID: 26816623 PMCID: PMC4668997 DOI: 10.1093/rb/rbu012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/30/2014] [Accepted: 08/31/2014] [Indexed: 12/12/2022] Open
Abstract
To declare the mechanisms of neural stem cells (NSCs) in response to material surface chemistry, NSCs were exposed to the self-assemble monolayers of alkanethiolates on gold surfaces terminated with amine (NH2), hydroxyl (OH) and methyl (CH3) for analysis. The morphological responses of NSCs were recorded; the gene expression profilings were detected by genechips; the gene expressions data of NSCs responded to different chemical groups were declared through the gene ontology term and pathway analyses. It showed that cells behaved dissimilar on the three chemical groups, the adhesion, proliferation and migration were easier on the NH2 and OH groups; the gene expressions of NSCs were induced differently, either, involved in several functional processes and signaling pathways. CH3 group induced genes enriched much in chemistry reactions and death processes, whereas many genes of cellular nucleotide metabolism were down-regulated. NH2 group induced NSCs to express many genes of receptors on membrane, and participated in cellular signal transduction of cell adhesion and interactions, or associated with axon growth. OH group was similar to NH2 group to induce the membrane response, but it also down regulated metabolism of cells. Therefore, it declared the chemical groups affected NSCs through inner way and the NH2, OH and CH3 groups triggered the cellular gene expression in different signaling pathways.
Collapse
Affiliation(s)
- Ying Wang
- Institute for regenerative medicine and biomimetic materials, School of materials science and engineering, Tsinghua University, Beijing 100084, China, Department of anatomy, histology and embryology, School of basic medical sciences, Capital Medical University, Beijing 100069, China and Department of material science and chemical engineering, Hainan University, Haikou 570228, China
| | - Shenglian Yao
- Institute for regenerative medicine and biomimetic materials, School of materials science and engineering, Tsinghua University, Beijing 100084, China, Department of anatomy, histology and embryology, School of basic medical sciences, Capital Medical University, Beijing 100069, China and Department of material science and chemical engineering, Hainan University, Haikou 570228, China
| | - Qingyuan Meng
- Institute for regenerative medicine and biomimetic materials, School of materials science and engineering, Tsinghua University, Beijing 100084, China, Department of anatomy, histology and embryology, School of basic medical sciences, Capital Medical University, Beijing 100069, China and Department of material science and chemical engineering, Hainan University, Haikou 570228, China
| | - Xiaolong Yu
- Institute for regenerative medicine and biomimetic materials, School of materials science and engineering, Tsinghua University, Beijing 100084, China, Department of anatomy, histology and embryology, School of basic medical sciences, Capital Medical University, Beijing 100069, China and Department of material science and chemical engineering, Hainan University, Haikou 570228, China
| | - Xiumei Wang
- Institute for regenerative medicine and biomimetic materials, School of materials science and engineering, Tsinghua University, Beijing 100084, China, Department of anatomy, histology and embryology, School of basic medical sciences, Capital Medical University, Beijing 100069, China and Department of material science and chemical engineering, Hainan University, Haikou 570228, China
| | - Fuzhai Cui
- Institute for regenerative medicine and biomimetic materials, School of materials science and engineering, Tsinghua University, Beijing 100084, China, Department of anatomy, histology and embryology, School of basic medical sciences, Capital Medical University, Beijing 100069, China and Department of material science and chemical engineering, Hainan University, Haikou 570228, China
| |
Collapse
|