1
|
Wu Y, Wang F, Huang Y, Zheng F, Zeng Y, Lu Z, Wang S, Sun B, Sun Y. A tantalum-containing zirconium-based metallic glass with superior endosseous implant relevant properties. Bioact Mater 2024; 39:25-40. [PMID: 38800719 PMCID: PMC11126771 DOI: 10.1016/j.bioactmat.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024] Open
Abstract
Zirconium-based metallic glasses (Zr-MGs) are demonstrated to exhibit high mechanical strength, low elastic modulus and excellent biocompatibility, making them promising materials for endosseous implants. Meanwhile, tantalum (Ta) is also well known for its ideal corrosion resistance and biological effects. However, the metal has an elastic modulus as high as 186 GPa which is not comparable to the natural bone (10-30 GPa), and it also has a relative high cost. Here, to fully exploit the advantages of Ta as endosseous implants, a small amount of Ta (as low as 3 at. %) was successfully added into a Zr-MG to generate an advanced functional endosseous implant, Zr58Cu25Al14Ta3 MG, with superior comprehensive properties. Upon carefully dissecting the atomic structure and surface chemistry, the results show that amorphization of Ta enables the uniform distribution in material surface, leading to a significantly improved chemical stability and extensive material-cell contact regulation. Systematical analyses on the immunological, angiogenesis and osteogenesis capability of the material are carried out utilizing the next-generation sequencing, revealing that Zr58Cu25Al14Ta3 MG can regulate angiogenesis through VEGF signaling pathway and osteogenesis via BMP signaling pathway. Animal experiment further confirms a sound osseointegration of Zr58Cu25Al14Ta3 MG in achieving better bone-implant-contact and inducing faster peri-implant bone formation.
Collapse
Affiliation(s)
- Yunshu Wu
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Feifei Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Yao Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fu Zheng
- National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yuhao Zeng
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Zhen Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
- Laboratory of Homeostatic Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baoan Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchun Sun
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| |
Collapse
|
2
|
Yu X, Cheng F, He W. Bisepoxide-Jeffamine microgel synthesis and application toward heterogeneous surface morphology for differential neuronal/non-neuronal cell responses in vitro. Colloids Surf B Biointerfaces 2021; 207:112009. [PMID: 34339968 DOI: 10.1016/j.colsurfb.2021.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022]
Abstract
Herein, a new non-vinylic type of cationic microgels (MG) was readily prepared from ethylene glycol diglycidyl ether and Jeffamine T-403 in water. The MG was responsive to both temperature and pH, and oxidatively stable as demonstrated by the hydrogen peroxide study. Using glass as a model substrate, its surface was easily imparted with a heterogeneous morphology by simply adsorbing MG dispersed in basic solution. Specifically, the morphology features patches made of a monolayer of connected yet individually recognizable MG. Through in vitro cell studies, we show that a mere change of the extent of surface coverage by such a patchy morphology can strike a balance in promoting adhesion and differentiation of neuron-like PC-12 cells and primary cortical neurons of chick embryo, without soliciting proliferative response from non-neuronal cells of NIH3T3 fibroblast and CTX astrocyte. This simple yet unconventional surface morphology created by MG could be leveraged in the future as an alternative strategy for neural interface engineering.
Collapse
Affiliation(s)
- Xueying Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China; School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China; School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China; School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China.
| |
Collapse
|
3
|
Xu X, Lu Y, Li S, Guo S, He M, Luo K, Lin J. Copper-modified Ti6Al4V alloy fabricated by selective laser melting with pro-angiogenic and anti-inflammatory properties for potential guided bone regeneration applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:198-210. [DOI: 10.1016/j.msec.2018.04.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
|
4
|
Lin C, Chen C, Huang Y, Huang C, Huang J, Jang J, Lin Y. In-vivo investigations and cytotoxicity tests on Ti/Zr-based metallic glasses with various Cu contents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:308-317. [DOI: 10.1016/j.msec.2017.03.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/01/2016] [Accepted: 03/24/2017] [Indexed: 12/24/2022]
|
5
|
Abstract
Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.
Collapse
|
6
|
Morin EA, Tang S, Rogers KL, He W. Facile Use of Cationic Hydrogel Particles for Surface Modification of Planar Substrates Toward Multifunctional Neural Permissive Surfaces: An in Vitro Investigation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5737-5745. [PMID: 26881298 DOI: 10.1021/acsami.6b00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synthetic materials such as silicon have been commonly used for neural interfacing applications but are intrinsically noninteractive with neurons. Here, a facile approach has been developed to integrate both chemical and topographical cues to impart neural permissiveness for such materials. The approach simply exploits the basic phenomenon of electrostatically driven adsorption of colloidal particles onto a solid material and applies it to a cationic hydrogel particle system that we have developed recently based on "click" reaction of epoxide and amine. The particle adsorption process can be tuned by varying the adsorption time and the concentration of the original colloidal suspension, both of which directly control the surface densities of the adsorbed hydrogel particles. Using the PC12 cell line and primary cortical neurons derived from chick embryo, we demonstrate that the particle-adsorbed surface readily supports robust cell adhesion and differentiation. Although the extent of neural permissiveness exhibited by such particle-adsorbed surface was comparable to the cationic polyethylenimine-coated control surface, the adsorbed hydrogel particles offer a unique reservoir function to the modified surface that is unparalleled by the control. The successful loading of hydrophobic dye of nile red to the surface adsorbed hydrogel particles indicates that the modified surface not only provides physical support of neurons, but also can be explored in the future to exert localized therapeutic actions favorable for neural interfacing.
Collapse
Affiliation(s)
- Emily A Morin
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Shuangcheng Tang
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Katie Lou Rogers
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Wei He
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Tang S, Huang L, Shi Z, He W. Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. J Mater Chem B 2015; 3:2842-2852. [DOI: 10.1039/c4tb01664e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simple variation of reaction parameters can provide a library of cationic epoxy–amine hydrogel particles with a diverse collection of physical and chemical characteristics, temperature responsiveness, and cytocompatibility.
Collapse
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Lu Huang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Zengqian Shi
- Center for Renewable Carbon
- Department of Forestry
- Wildlife & Fisheries
- University of Tennessee
- Knoxville
| | - Wei He
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Mechanical
| |
Collapse
|