1
|
Younes HM, Kadavil H, Ismail HM, Adib SA, Zamani S, Alany RG, Al-Kinani AA. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics 2023; 16:32. [PMID: 38258043 PMCID: PMC10818558 DOI: 10.3390/pharmaceutics16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional electrospinning is a promising technique for fabricating nanofibers for tissue engineering and drug delivery applications. The method is highly efficient in producing nanofibers with morphology and porosity similar to the extracellular matrix. Nonetheless, and in many instances, the process has faced several limitations, including weak mechanical strength, large diameter distributions, and scaling-up difficulties of its fabricated electrospun nanofibers. The constraints of the polymer solution's intrinsic properties are primarily responsible for these limitations. Reactive electrospinning constitutes a novel and modified electrospinning techniques developed to overcome those challenges and improve the properties of the fabricated fibers intended for various biomedical applications. This review mainly addresses reactive electrospinning techniques, a relatively new approach for making in situ or post-crosslinked nanofibers. It provides an overview of and discusses the recent literature about chemical and photoreactive electrospinning, their various techniques, their biomedical applications, and FDA regulatory aspects related to their approval and marketing. Another aspect highlighted in this review is the use of crosslinking and reactive electrospinning techniques to enhance the fabricated nanofibers' physicochemical and mechanical properties and make them more biocompatible and tailored for advanced intelligent drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Husam M. Younes
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hana Kadavil
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hesham M. Ismail
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Charles River Laboratories, Montreal, QC H9X 3R3, Canada
| | - Sandi Ali Adib
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Somayeh Zamani
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raid G. Alany
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT2 7LB, UK
| | - Ali A. Al-Kinani
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
| |
Collapse
|
2
|
Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2476. [PMID: 31382665 PMCID: PMC6695673 DOI: 10.3390/ma12152476] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/02/2023]
Abstract
Electrospinning is an exceptional technology to fabricate sub-micrometric fiber scaffolds for regenerative medicine applications and to mimic the morphology and the chemistry of the natural extracellular matrix (ECM). Although most synthetic and natural polymers can be electrospun, gelatin frequently represents a material of choice due to the presence of cell-interactive motifs, its wide availability, low cost, easy processability, and biodegradability. However, cross-linking is required to stabilize the structure of the electrospun matrices and avoid gelatin dissolution at body temperature. Different physical and chemical cross-linking protocols have been described to improve electrospun gelatin stability and to preserve the morphological fibrous arrangement of the electrospun gelatin scaffolds. Here, we review the main current strategies. For each method, the cross-linking mechanism and its efficiency, the influence of electrospinning parameters, and the resulting fiber morphology are considered. The main drawbacks as well as the open challenges are also discussed.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
3
|
Gorgieva S, Hribernik S. Microstructured and Degradable Bacterial Cellulose⁻Gelatin Composite Membranes: Mineralization Aspects and Biomedical Relevance. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E303. [PMID: 30813312 PMCID: PMC6409525 DOI: 10.3390/nano9020303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/17/2022]
Abstract
Bacterial cellulose (BC)⁻gelatin (GEL) membranes were processed by successive periodate oxidation and a freeze-thawing/carbodiimide crosslinking procedure, first facilitating a Schiff-base reaction among respective aldehyde and hydroxyl groups, and later GEL stabilization and microstructuring. The formation of highly microporous structures within the GEL portion, with significant differences between bottom and top, was elucidated, and pores in the 27.6 ± 3 µm⁻108 ± 5 µm range were generated, exceeding the threshold value of ~10 µm sufficient for cell trafficking. During a relatively short (6 h) exhaustion procedure in supersaturated simulated body fluid solution, the membranes accommodated the combination of biologically relevant minerals, i.e., flake-like octacalcium phosphate (OCP) and (amorphous) apatite, onto their surface, forming a membrane with intensive swelling (650⁻1650%) and up to 90% weight loss in a 4-week period. The membranes´ 6-day eluates did not evoke any cytotoxic effects toward human fibroblast, MRC-5 cells. The same type of cells retained their morphology in direct contact with the membrane, attaching to the GEL porous site, while not attaching to the GEL thin-coated BC side, most probably due to combined, ablation effect of dominant β-sheet conformation and carbodiimide crosslinking. Together with arrested proliferation through the BC side, the membranes demonstrated beneficial properties for potential guided tissue regeneration (GTR) applications.
Collapse
Affiliation(s)
- Selestina Gorgieva
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| | - Silvo Hribernik
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| |
Collapse
|
4
|
Mautner A, Kobkeatthawin T, Mayer F, Plessl C, Gorgieva S, Kokol V, Bismarck A. Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers. NANOMATERIALS 2019; 9:nano9020136. [PMID: 30678201 PMCID: PMC6409817 DOI: 10.3390/nano9020136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Water hardness not only constitutes a significant hazard for the functionality of water infrastructure but is also associated with health concerns. Commonly, water hardness is tackled with synthetic ion-exchange resins or membranes that have the drawbacks of requiring the awkward disposal of saturated materials and being based on fossil resources. In this work, we present a renewable nanopaper for the purpose of water softening prepared from phosphorylated TEMPO-oxidized cellulose nanofibrils (PT-CNF). Nanopapers were prepared from CNF suspensions in water (PT-CNF nanopapers) or low surface tension organic liquids (ethanol), named EPT-CNF nanopapers, respectively. Nanopaper preparation from ethanol resulted in a significantly increased porosity of the nanopapers enabling much higher permeances: more than 10,000× higher as compared to nanopapers from aqueous suspensions. The adsorption capacity for Ca2+ of nanopapers from aqueous suspensions was 17 mg g-1 and 5 mg g-1 for Mg2+; however, EPT-CNF nanopapers adsorbed more than 90 mg g-1 Ca2+ and almost 70 mg g-1 Mg2+. The higher adsorption capacity was a result of the increased accessibility of functional groups in the bulk of the nanopapers caused by the higher porosity of nanopapers prepared from ethanol. The combination of very high permeance and adsorption capacity constitutes a high overall performance of these nanopapers in water softening applications.
Collapse
Affiliation(s)
- Andreas Mautner
- Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry & Research, University of Vienna, 1090 Vienna, Austria.
- Polymer & Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK.
| | - Thawanrat Kobkeatthawin
- Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry & Research, University of Vienna, 1090 Vienna, Austria.
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Florian Mayer
- Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry & Research, University of Vienna, 1090 Vienna, Austria.
| | - Christof Plessl
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Selestina Gorgieva
- Institute for Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| | - Vanja Kokol
- Institute for Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| | - Alexander Bismarck
- Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry & Research, University of Vienna, 1090 Vienna, Austria.
- Polymer & Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK.
| |
Collapse
|
5
|
Kaisersberger Vincek M, Mor A, Gorgieva S, Kokol V. Antibacterial activity and cytotoxycity of gelatine-conjugated lysine-based peptides. J Biomed Mater Res A 2017; 105:3110-3126. [PMID: 28771959 DOI: 10.1002/jbm.a.36164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
The effect of the coupling approach (chemical by using carbodiimide chemistry, and enzymatic by using transglutaminase) of a hydrophilic ɛ-poly-L-lysine (ɛPL) and a structurally-hydrophobic oligo-acyl-lysyl (OAK) to a gelatine (GEL) macromolecule, and their antibacterial activity against Gram-negative E. coli and Gram-positive S. aureus bacteria, as well as cytotoxicity to human osteoblast cells was studied as potential macromolecules for biomedical applications. Different spectroscopic (ultraviolet-visible, infrared, fluorescence, and electron paramagnetic resonance) and separation (size-exclusion chromatography and capillary zone electrophoresis) techniques, as well as zeta-potential analysis were performed to confirm the ɛPL/OAK covalent coupling and to determine their amount and orientation of the immobilization. The highest and kinetically the fastest reduction of bacteria (≥77% against E. coli vs. ≥82% against S. aureus) was achieved with GEL functionalized with ɛPL/OAK by the chemical grafting-to approach being correlated with conformationally the highly-flexible ˝brush-like˝ orientation linkage of peptides, enable its targeted and rapid interactions with bacteria membrane. The up to 400-fold lower yield of OAKs being immobilized may be related also to its cationic charge and hydrophobic alkyl chain moieties, compared to more hydrophilic ɛPL easily causing random polymerization and self-conjugation. The ɛPL/OAK-functionalized GEL did not induce citotoxicity to osteoblasts, even at ∼25-fold higher concentration than bacterial minimum inhibitory (MIC) concentration of ɛPL/OAK. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3110-3126, 2017.
Collapse
Affiliation(s)
- Maja Kaisersberger Vincek
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Maribor, Slovenia
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Maribor, Slovenia
| | - Vanja Kokol
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Maribor, Slovenia
| |
Collapse
|
6
|
Gorgieva S, Girandon L, Kokol V. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:478-489. [PMID: 28183635 DOI: 10.1016/j.msec.2016.12.092] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/30/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Cellulose-nanofibrils (CNFs) enriched gelatine (GEL) scaffolds were fabricated in-situ by the combined freeze-thawing process and carbodiimide crosslinking chemistry. The original- and variously surface anionised CNFs (carboxylated/CNF-COOH/, and phosphonated with 3-AminoPropylphosphoric Acid/CNF-COOH-ApA/) were used in order to tune the scaffolds' biomimetic structure towards a more intensive mineralization process. The pore size reduction (from 208±35μm to 91±35μm) after 50% v/v of CNFs addition to GEL was identified, while separated pore-walls' alignment vs. shorter, dense and elongated pores are observed when using 80% v/v of original-CNFs vs. anionised-CNFs, all of them possessed osteoid-like compressive strength (0.025-0.40MPa) and elasticity (0.04-0.15MPa). While randomly distributed Ca2+-deficient hydroxyapatite/HAp/(Ca/P≈1.4) aggregates were identified in the case of original-CNF prevalent scaffolds after four weeks of incubation in SBF, the more uniform and intensified deposition with HAp-like (Ca/P≈1.69) structures were established using CNF-COOH-Apa. The growth of Mesenchymal Stem Cells (MSCs) was observed on all CNF-containing scaffolds, resulting in more extensive Ca2+ deposition compared to the positive control or pure GEL scaffold. Among them, the scaffold prepared with the 50% v/v CNF-COOH-ApA showed significantly increased mineralization kinetic as well as the capacity for bone-like patterning in bone tissue regeneration.
Collapse
Affiliation(s)
- Selestina Gorgieva
- University of Maribor, Institute of Engineering Materials and Design, Maribor, Slovenia
| | | | - Vanja Kokol
- University of Maribor, Institute of Engineering Materials and Design, Maribor, Slovenia.
| |
Collapse
|
7
|
Magnesium Modifies the Structural Features of Enzymatically Mineralized Collagen Gels Affecting the Retraction Capabilities of Human Dermal Fibroblasts Embedded within This 3D System. MATERIALS 2016; 9:ma9060477. [PMID: 28773595 PMCID: PMC5456744 DOI: 10.3390/ma9060477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
Abstract
Mineralized collagen gels have been developed as in vitro models to better understand the mechanisms regulating the calcification process and the behavior of a variety of cell types. The vast majority of data are related to stem cells and to osteoblast-like cells, whereas little information is available for dermal fibroblasts, although these cells have been associated with ectopic calcification and consequently to a number of pathological conditions. Therefore, we developed and characterized an enzymatically mineralized collagen gel in which fibroblasts were encapsulated within the 3D structure. MgCl2 was also added during gel polymerization, given its role as (i) modulator of ectopic calcification; (ii) component of biomaterials used for bone replacement; and (iii) constituent of pathological mineral deposits. Results demonstrate that, in a short time, an enzymatically mineralized collagen gel can be prepared in which mineral deposits and viable cells are homogeneously distributed. MgCl2 is present in mineral deposits and significantly affects collagen fibril assembly and organization. Consequently, cell shape and the ability of fibroblasts to retract collagen gels were modified. The development of three-dimensional (3D) mineralized collagen matrices with both different structural features and mineral composition together with the use of fibroblasts, as a prototype of soft connective tissue mesenchymal cells, may pave new ways for the study of ectopic calcification.
Collapse
|
8
|
|
9
|
Joy J, Gupta A, Jahnavi S, Verma RS, Ray AR, Gupta B. Understanding thein situcrosslinked gelatin hydrogel. POLYM INT 2015. [DOI: 10.1002/pi.5042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jincy Joy
- Bioengineering Laboratory, Department of Textile Technology; Indian Institute of Technology; New Delhi 110016 India
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Amlan Gupta
- Department of Pathology; Sikkim Manipal Institute of Medical Sciences; Gangtok 737102 India
| | - Sarvepalli Jahnavi
- Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Rama S Verma
- Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Alok R Ray
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology; Indian Institute of Technology; New Delhi 110016 India
| |
Collapse
|
10
|
Rajmohan G, Admane P, Anish C, Panda AK. Fusion and Self-Assembly of Biodegradable Polymer Particles into Scaffoldlike and Membranelike Structures at Room Temperature for Regenerative Medicine. Mol Pharm 2014; 11:2190-202. [DOI: 10.1021/mp500106u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Rajmohan
- Product Development Cell, National Institute of Immunology Aruna Asaf Ali Marg, New
Delhi-110067, India
| | - Prasad Admane
- Product Development Cell, National Institute of Immunology Aruna Asaf Ali Marg, New
Delhi-110067, India
| | - Chakkumkal Anish
- Product Development Cell, National Institute of Immunology Aruna Asaf Ali Marg, New
Delhi-110067, India
| | - Amulya K. Panda
- Product Development Cell, National Institute of Immunology Aruna Asaf Ali Marg, New
Delhi-110067, India
| |
Collapse
|