1
|
Giuliani C, De Stefano I, Mancuso M, Fiaschini N, Hein LA, Mirabile Gattia D, Scatena E, Zenobi E, Del Gaudio C, Galante F, Felici G, Rinaldi A. Advanced Electrospun Composites Based on Polycaprolactone Fibers Loaded with Micronized Tungsten Powders for Radiation Shielding. Polymers (Basel) 2024; 16:2590. [PMID: 39339053 PMCID: PMC11435529 DOI: 10.3390/polym16182590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Exposure to high levels of radiation can cause acute, long-term health effects, such as acute radiation syndrome, cancer, and cardiovascular disease. This is an important occupational hazard in different fields, such as the aerospace and healthcare industry, as well as a crucial burden to overcome to boost space applications and exploration. Protective bulky equipment made of heavy metals is not suitable for many advanced purporses, such as mobile devices, wearable shields, and manned spacecrafts. In the latter case, the in-space manufacturing of protective shields is highly desirable and remains an unmet need. Composites made of polymers and high atomic number fillers are potential means for radiation protection due to their low weight, good flexibility, and good processability. In the present work, we developed electrospun composites based on polycaprolactone (polymer matrix) and tungsten powder for application as shielding materials. Electrospinning is a versatile technology that is easily scalable at an industrial level and allows obtaining very lightweight, flexible sheet materials for wearables. By controlling tungsten powder size, we engineered homogeneous, stable and processable suspensions to fabricate radiation composite shielding sheets. The shielding capability was assessed by an in vivo model on prototype composite sheets containing 80 w% of W filler in a polycaprolactone (PCL) fibrous matrix by means of irradiation tests (X-rays) on mice. The obtained results are promising; as expected, the shielding effectivity of the developed composite material increases with the thickness/number of stacked layers. It is worth noting that a thin barrier consisting of 24 layers of the innovative shielding material reduces the extent of apoptosis by 1.5 times compared to the non-shielded mice.
Collapse
Affiliation(s)
- Chiara Giuliani
- TERIN-DEC-ACEL Laboratory, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | - Ilaria De Stefano
- Division of Biotechnologies (SSPT-BIOTEC), ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | - Mariateresa Mancuso
- Division of Biotechnologies (SSPT-BIOTEC), ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | | | | | - Daniele Mirabile Gattia
- SSPT-TIMAF-MADD Laboratory, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | - Elisa Scatena
- E. Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy
| | - Eleonora Zenobi
- E. Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy
| | | | | | | | - Antonio Rinaldi
- TERIN-DEC-ACEL Laboratory, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
2
|
Fiaschini N, Carnevali F, Van der Esch SA, Vitali R, Mancuso M, Sulli M, Diretto G, Negroni A, Rinaldi A. Innovative Multilayer Electrospun Patches for the Slow Release of Natural Oily Extracts as Dressings to Boost Wound Healing. Pharmaceutics 2024; 16:159. [PMID: 38399220 PMCID: PMC10891902 DOI: 10.3390/pharmaceutics16020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Electrospinning is an advanced manufacturing strategy used to create innovative medical devices from continuous nanoscale fibers that is endowed with tunable biological, chemical, and physical properties. Innovative medical patches manufactured entirely by electrospinning are discussed in this paper, using a specific plant-derived formulation "1 Primary Wound Dressing©" (1-PWD) as an active pharmaceutical ingredient (API). 1-PWD is composed of neem oil (Azadirachta indica A. Juss.) and the oily extracts of Hypericum perforatum (L.) flowers, according to the formulation patented by the ENEA of proven therapeutic efficacy as wound dressings. The goal of this work is to encapsulate this API and demonstrate that its slow release from an engineered electrospun patch can increase the therapeutic efficacy for wound healing. The prototyped patch is a three-layer core-shell membrane, with a core made of fibers from a 1-PWD-PEO blend, enveloped within two external layers made of medical-grade polycaprolactone (PCL), ensuring mechanical strength and integrity during manipulation. The system was characterized via electron microscopy (SEM) and chemical and contact angle tests. The encapsulation, release, and efficacy of the API were confirmed by FTIR and LC-HRMS and were validated via in vitro toxicology and scratch assays.
Collapse
Affiliation(s)
| | - Fiorella Carnevali
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Stephen Andrew Van der Esch
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Roberta Vitali
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Mariateresa Mancuso
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Anna Negroni
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| | - Antonio Rinaldi
- Nanofaber S.r.l., 00123 Rome, Italy;
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, 00123 Rome, Italy; (F.C.); (S.A.V.d.E.); (R.V.); (M.M.); (M.S.); (G.D.)
| |
Collapse
|
3
|
Ariaudo D, Cavalieri F, Rinaldi A, Aguilera A, Lopez M, Perez HG, Felipe A, del Carmen Dominguez M, Ruiz O, Martinez G, Venanzi M. Alginate Microsponges as a Scaffold for Delivery of a Therapeutic Peptide against Rheumatoid Arthritis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2709. [PMID: 37836350 PMCID: PMC10574729 DOI: 10.3390/nano13192709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The quest for biocompatible drug-delivery devices that could be able to open new administration routes is at the frontier of biomedical research. In this contribution, porous polysaccharide-based microsponges based on crosslinked alginate polymers were developed and characterized by optical spectroscopy and nanoscopic microscopy techniques. We show that macropores with a size distribution ranging from 50 to 120 nm enabled efficient loading and delivery of a therapeutic peptide (CIGB814), presently under a phase 3 clinical trial for the treatment of rheumatoid arthritis. Alginate microsponges showed 80% loading capacity and sustained peptide release over a few hours through a diffusional mechanism favored by partial erosion of the polymer scaffold. The edible and biocompatible nature of alginate polymers open promising perspectives for developing a new generation of polysaccharide-based carriers for the controlled delivery of peptide drugs, exploiting alternative routes with respect to intravenous administration.
Collapse
Affiliation(s)
- Daniela Ariaudo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (F.C.)
| | - Francesca Cavalieri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (F.C.)
| | - Antonio Rinaldi
- PROMAS-MATPRO Laboratory, Sustainability Department, ENEA, 00123 Rome, Italy;
- NANOFABER S.r.l., Via Anguillarese 301, 00123 Rome, Italy
| | - Ana Aguilera
- Biotechnological Development Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.A.); (M.L.); (O.R.)
| | - Matilde Lopez
- Biotechnological Development Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.A.); (M.L.); (O.R.)
| | - Hilda Garay Perez
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (H.G.P.); (A.F.); (M.d.C.D.)
| | - Ariel Felipe
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (H.G.P.); (A.F.); (M.d.C.D.)
| | - Maria del Carmen Dominguez
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (H.G.P.); (A.F.); (M.d.C.D.)
| | - Odalys Ruiz
- Biotechnological Development Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.A.); (M.L.); (O.R.)
| | - Gillian Martinez
- Business Development Direction, Center for Genetic Engineering and Biotechnology, Avenue 31/158 and 190, Playa, Havana 11600, Cuba;
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (F.C.)
| |
Collapse
|
4
|
Carotenuto F, Fiaschini N, Di Nardo P, Rinaldi A. Towards a Material-by-Design Approach to Electrospun Scaffolds for Tissue Engineering Based on Statistical Design of Experiments (DOE). MATERIALS (BASEL, SWITZERLAND) 2023; 16:1539. [PMID: 36837169 PMCID: PMC9961090 DOI: 10.3390/ma16041539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Electrospinning bears great potential for the manufacturing of scaffolds for tissue engineering, consisting of a porous mesh of ultrafine fibers that effectively mimic the extracellular matrix (ECM) and aid in directing stem cell fate. However, for engineering purposes, there is a need to develop material-by-design approaches based on predictive models. In this methodological study, a rational methodology based on statistical design of experiments (DOE) is discussed in detail, yielding heuristic models that capture the linkage between process parameters (Xs) of the electrospinning and scaffold properties (Ys). Five scaffolds made of polycaprolactone are produced according to a 22-factorial combinatorial scheme where two Xs, i.e., flow rate and applied voltage, are varied between two given levels plus a center point. The scaffolds were characterized to measure a set of properties (Ys), i.e., fiber diameter distribution, porosity, wettability, Young's modulus, and cell adhesion on murine myoblast C1C12 cells. Simple engineering DOE models were obtained for all Ys. Each Y, for example, the biological response, can be used as a driver for the design process, using the process-property model of interest for accurate interpolation within the design domain, enabling a material-by-design strategy and speeding up the product development cycle. The implications are also illustrated in the context of the design of multilayer scaffolds with microstructural gradients and controlled properties of each layer. The possibility of obtaining statistical models correlating between diverse output properties of the scaffolds is highlighted. Noteworthy, the featured DOE approach can be potentially merged with artificial intelligence tools to manage complexity and it is applicable to several fields including 3D printing.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- CIMER-Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | | | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- CIMER-Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Antonio Rinaldi
- SSPT-PROMAS-MATPRO Laboratory, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
5
|
Fiaschini N, Giuliani C, Vitali R, Tammaro L, Valerini D, Rinaldi A. Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3962. [PMID: 36432247 PMCID: PMC9698612 DOI: 10.3390/nano12223962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Antibacterial properties of engineered materials are important in the transition to a circular economy and societal security, as they are central to many key industrial areas, such as health, food, and water treatment/reclaiming. Nanocoating and electrospinning are two versatile, simple, and low-cost technologies that can be combined into new advanced manufacturing approaches to achieve controlled production of innovative micro- and nano-structured non-woven membranes with antifouling and antibacterial properties. The present study investigates a rational approach to design and manufacture electrospun membranes of polysulfone (PSU) with mechanical properties optimized via combinatorial testing from factorial design of experiments (DOE) and endowed with antimicrobial silver (Ag) nanocoating. Despite the very low amount of Ag deposited as a conformal percolating nanocoating web on the polymer fibers, the antimicrobial resistance assessed against the Gram-negative bacteria E. coli proved to be extremely effective, almost completely inhibiting the microbial proliferation with respect to the reference uncoated PSU membrane. The results are relevant, for example, to improve antifouling behavior in ultrafiltration and reverse osmosis in water treatment.
Collapse
Affiliation(s)
| | - Chiara Giuliani
- SSPT-PROMAS-MATPRO, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | - Roberta Vitali
- SSPT-TECS-TEB, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | - Loredana Tammaro
- SSPT-PROMAS-NANO, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Piazzale E. Fermi, 1, Portici, 80055 Napoli, Italy
| | - Daniele Valerini
- SSPT-PROMAS-MATAS, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 7 Appia, km 706, 72100 Brindisi, Italy
| | - Antonio Rinaldi
- SSPT-PROMAS-MATPRO, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
6
|
Isaac B, Taylor RM, Reifsnider K. Anisotropic Characterizations of Electrospun PAN Nanofiber Mats Using Design of Experiments. NANOMATERIALS 2020; 10:nano10112273. [PMID: 33212848 PMCID: PMC7698451 DOI: 10.3390/nano10112273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
This paper deals with the dielectric and mechanical characterizations of polyacrylonitrile (PAN)-aligned electrospun nanofiber mats. A two factor three level full factorial experiment is conducted to understand the effect of various parameters on dielectric and mechanical responses. These responses are recorded against randomly oriented and aligned nanofiber mats. Improved properties of electrospun mats have applications in the field of energy storage and nanocomposite reinforcement. Dielectric and mechanical characterizations of PAN mats are vital, as the aligned electrospun mats were found to be useful in advanced energy and mechanical reinforcement applications. Therefore, it is paramount to understand the effects of system parameters to these properties. The design of experiment (DoE) includes two factors and three level full factorial experiments with concentrations of PAN solutions at 8 wt.%, 9 wt.%, and 10 wt.%, and speed of the rotating mandrel (collector) at 3 volt (V), 4 V, and 5 V inputs. The electric field intensity used in the experiment is 1 kV/cm. DoE is conducted to understand the nonlinear interactions of parameters to these responses. The dielectric and mechanical characterizations of 8 wt.%, 9 wt.%, and 10 wt.% with different speeds for the original and improved systems are discussed. It was observed that at 9 wt.% and at all mandrel speeds, the dielectric and tensile properties are optimum.
Collapse
Affiliation(s)
- Blesson Isaac
- Chemical and Radiation Measurement Department, Energy Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Correspondence: ; Tel.: +1-713-553-4037
| | - Robert M. Taylor
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA; (R.M.T.); (K.R.)
| | - Kenneth Reifsnider
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA; (R.M.T.); (K.R.)
| |
Collapse
|
7
|
Politi S, Carotenuto F, Rinaldi A, Di Nardo P, Manzari V, Albertini MC, Araneo R, Ramakrishna S, Teodori L. Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1781. [PMID: 32916791 PMCID: PMC7558997 DOI: 10.3390/nano10091781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the "click" concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the "click" reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration.
Collapse
Affiliation(s)
- Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | - Felicia Carotenuto
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Antonio Rinaldi
- Department of Sustainability (SSPT), ENEA, 00123 Rome, Italy;
| | - Paolo Di Nardo
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
- L.L. Levshin Institute of Cluster Oncology, I. M. Sechenov First Medical University, Moscow 119991, Russia
| | - Vittorio Manzari
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | | | - Rodolfo Araneo
- Department of Astronautics Electrical and Energy Engineering (DIAEE), University of Rome “La Sapienza”, 00184 Rome, Italy;
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
8
|
Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online 2020; 19:69. [PMID: 32883300 PMCID: PMC7469110 DOI: 10.1186/s12938-020-00810-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold's internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
9
|
Young RE, Graf J, Miserocchi I, Van Horn RM, Gordon MB, Anderson CR, Sefcik LS. Optimizing the alignment of thermoresponsive poly(N-isopropyl acrylamide) electrospun nanofibers for tissue engineering applications: A factorial design of experiments approach. PLoS One 2019; 14:e0219254. [PMID: 31276542 PMCID: PMC6611625 DOI: 10.1371/journal.pone.0219254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Thermoresponsive polymers, such as poly(N-isopropyl acrylamide) (PNIPAM), have been identified and used as cell culture substrates, taking advantage of the polymer's lower critical solution temperature (LCST) to mechanically harvest cells. This technology bypasses the use of biochemical enzymes that cleave important cell-cell and cell-matrix interactions. In this study, the process of electrospinning is used to fabricate and characterize aligned PNIPAM nanofiber scaffolds that are biocompatible and thermoresponsive. Nanofiber scaffolds produced by electrospinning possess a 3D architecture that mimics native extracellular matrix, providing physical and chemical cues to drive cell function and phenotype. We present a factorial design of experiments (DOE) approach to systematically determine the effects of different electrospinning process parameters on PNIPAM nanofiber diameter and alignment. Results show that high molecular weight PNIPAM can be successfully electrospun into both random and uniaxially aligned nanofiber mats with similar fiber diameters by simply altering the speed of the rotating mandrel collector from 10,000 to 33,000 RPM. PNIPAM nanofibers were crosslinked with OpePOSS, which was verified using FTIR. The mechanical properties of the scaffolds were characterized using dynamic mechanical analysis, revealing an order of magnitude difference in storage modulus (MPa) between cured and uncured samples. In summary, cross-linked PNIPAM nanofiber scaffolds were determined to be stable in aqueous culture, biocompatible, and thermoresponsive, enabling their use in diverse cell culture applications.
Collapse
Affiliation(s)
- Rachel E. Young
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| | - Jodi Graf
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| | - Isabella Miserocchi
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| | - Ryan M. Van Horn
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| | - Melissa B. Gordon
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| | - Christopher R. Anderson
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| | - Lauren S. Sefcik
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, United States of America
| |
Collapse
|
10
|
Electrospun Nanomaterials Implementing Antibacterial Inorganic Nanophases. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrospinning is a versatile, simple, and low cost process for the controlled production of fibers. In recent years, its application to the development of multifunctional materials has encountered increasing success. In this paper, we briefly overview the general aspects of electrospinning and then we focus on the implementation of inorganic nanoantimicrobials, e.g., nanosized antimicrobial agents in electrospun fibers. The most relevant characteristics sought in nanoantimicrobials supported on (or dispersed into) polymeric materials are concisely discussed as well. The interesting literature issued in the last decade in the field of antimicrobial electrospun nanomaterials is critically described. A classification of the most relevant studies as a function of the different approaches chosen for incorporating nanoantimicrobials in the final material is also provided.
Collapse
|
11
|
Zhao P, Cao M, Gu H, Gao Q, Xia N, He Y, Fu J. Research on the electrospun foaming process to fabricate three-dimensional tissue engineering scaffolds. J Appl Polym Sci 2018. [DOI: 10.1002/app.46898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mingyi Cao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| | - Haibing Gu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qing Gao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| | - Neng Xia
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yong He
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
- The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
12
|
Boffito M, Di Meglio F, Mozetic P, Giannitelli SM, Carmagnola I, Castaldo C, Nurzynska D, Sacco AM, Miraglia R, Montagnani S, Vitale N, Brancaccio M, Tarone G, Basoli F, Rainer A, Trombetta M, Ciardelli G, Chiono V. Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells. PLoS One 2018; 13:e0199896. [PMID: 29979710 PMCID: PMC6034803 DOI: 10.1371/journal.pone.0199896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/15/2018] [Indexed: 11/28/2022] Open
Abstract
Scaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma treatment for acrylic acid surface grafting/polymerization and finally grafted with laminin-1 (PU-LN1) or gelatin (PU-G) by carbodiimide chemistry. LN1 is a cardiac niche extracellular matrix component and plays a key role in heart formation during embryogenesis, while G is a low-cost cell-adhesion protein, here used as a control functionalizing molecule. X-ray photoelectron spectroscopy analysis shows nitrogen percentage increase after functionalization. O1s and C1s core-level spectra and static contact angle measurements show changes associated with successful functionalization. ELISA assay confirms LN1 surface grafting. PU-G and PU-LN1 scaffolds both improve CPC adhesion, but LN1 functionalization is superior in promoting proliferation, protection from apoptosis and expression of differentiation markers for cardiomyocytes, endothelial and smooth muscle cells. PU-LN1 and PU scaffolds are biodegraded into non-cytotoxic residues. Scaffolds subcutaneously implanted in mice evoke weak inflammation and integrate with the host tissue, evidencing a significant blood vessel density around the scaffolds. PU-LN1 scaffolds show their superiority in driving CPC behavior, evidencing their promising role in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Pamela Mozetic
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- Center for Translational Medicine, International Clinical Research Center, St.Anne’s University Hospital, Brno, Czechia
| | - Sara Maria Giannitelli
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Rita Miraglia
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Basoli
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute for Photonics and Nanotechnology, National Research Council, Rome, Italy
| | - Marcella Trombetta
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
13
|
Electrospinning and microfluidics. ELECTROFLUIDODYNAMIC TECHNOLOGIES (EFDTS) FOR BIOMATERIALS AND MEDICAL DEVICES 2018. [PMCID: PMC7152487 DOI: 10.1016/b978-0-08-101745-6.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Ruiter FAA, Alexander C, Rose FRAJ, Segal JI. A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies. ACTA ACUST UNITED AC 2017. [PMID: 28643700 DOI: 10.1088/1748-605x/aa7b54] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospun fibrous materials have increasing applications in regenerative medicine due to the similarity of fibre constructs to the morphology of certain extracellular matrices. Although experimentally the electrospinning method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fibre morphology is not yet fully understood. Here, we hypothesised that a design of experiments (DoE) model could determine combinations of process parameters that result in significant effects on poly-D,L-lactic acid (PDLLA) fibre morphology. The process parameters used in this study were applied voltage, needle-to-collector distance, flow rate and polymer concentration. Data obtained for mean fibre diameter, standard deviation (SD) of the fibre diameter (measure of fibre morphology) and presence of 'beading' on the fibres (beads per μm2) were evaluated as a measure of PDLLA fibre morphology. Uniform fibres occurred at SDs of ≤500 nm, 'beads-on-string' morphologies were apparent between ±500 and 1300 nm and large beads were observed at ±1300-1800 nm respectively. Mean fibre diameter was significantly influenced by the applied voltage and interaction between flow rate and polymer concentration. Fibre morphology was mainly influenced by the polymer concentration, while bead distribution was significantly influenced by the polymer concentration as well as the flow rate. The resultant DoE model regression equations were tested and considered suitable for the prediction of parameters combinations needed for desired PDLLA fibre diameter and additionally provided information regarding the expected fibre morphology.
Collapse
Affiliation(s)
- F A A Ruiter
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
15
|
Mozetic P, Giannitelli SM, Gori M, Trombetta M, Rainer A. Engineering muscle cell alignment through 3D bioprinting. J Biomed Mater Res A 2017; 105:2582-2588. [PMID: 28544472 DOI: 10.1002/jbm.a.36117] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/08/2017] [Accepted: 05/15/2017] [Indexed: 11/10/2022]
Abstract
Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017.
Collapse
Affiliation(s)
- Pamela Mozetic
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Sara Maria Giannitelli
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Manuele Gori
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Marcella Trombetta
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Alberto Rainer
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| |
Collapse
|
16
|
Seyedmahmoud R, Mozetic P, Rainer A, Giannitelli SM, Basoli F, Trombetta M, Traversa E, Licoccia S, Rinaldi A. A primer of statistical methods for correlating parameters and properties of electrospun poly(l-lactide) scaffolds for tissue engineering-PART 2: Regression. J Biomed Mater Res A 2014; 103:103-14. [DOI: 10.1002/jbm.a.35183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Rasoul Seyedmahmoud
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
| | - Pamela Mozetic
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Alberto Rainer
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Sara Maria Giannitelli
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Francesco Basoli
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
| | - Marcella Trombetta
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Enrico Traversa
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
- Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Silvia Licoccia
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
| | - Antonio Rinaldi
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
- ENEA,CR Casaccia; Via Anguillarese 301, Santa Maria di Galeria Rome Italy
- International Research Center for Mathematics & Mechanics of Complex Systems, University of L'Aquila; Via S. Pasquale, Cisterna di Latina (LT) Italy
| |
Collapse
|