1
|
Singh V, Parthasarathy R, Ye Q, Spencer P, Misra A. Scale dependent nanomechanical properties of dentin adhesive and adhesive-collagen composite. FRONTIERS IN DENTAL MEDICINE 2024; 5:1423461. [PMID: 39917649 PMCID: PMC11797951 DOI: 10.3389/fdmed.2024.1423461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/07/2024] [Indexed: 02/09/2025] Open
Abstract
The complex micrometer construct at the interface that joins the composite material to the tooth surface in restorative dentistry is composed of the composite formed by infiltrating adhesive into demineralized dentin (collagen matrix). The overall performance of composite restorations is therefore directly linked to the properties of the polymerized adhesive and adhesive-collagen composite. Nanoindentation and nanoDMA tests are performed on model methacrylate based adhesive and collagen-adhesive composite to study their mechanical properties. The adhesive collagen composite is prepared by the infiltration of dentin adhesive into a completely demineralized bovine dentin. The obtained experimental results show that both the neat adhesive and the collagen-adhesive composite are heterogeneous materials at the spatial scales of property interrogation. It is also found that the reduced elastic modulus generally decreases with increasing indentation contact depth reaching an asymptote for both neat adhesive and collagen-adhesive composite. This reduced modulus behavior can be attributed to the increase in the indentation interaction volume. In addition, the measured frequency dependent storage and loss moduli indicate that both the neat adhesive and collagen adhesive composites are viscoelastic materials which are likely to exhibit creep deformation and rate-dependent behavior in physiological function.
Collapse
Affiliation(s)
- Viraj Singh
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
| | - Ranganathan Parthasarathy
- Civil and Environmental Engineering Department, Tennessee State University, Nashville, TN, United States
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Civil and Environmental Engineering Department, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Bassir L, Taravati S, Nouri F, Rahimi S. The effect of different intracanal irrigants on the push-out bond strength of dentin in damaged anterior primary teeth. J Med Life 2024; 17:536-542. [PMID: 39144693 PMCID: PMC11320612 DOI: 10.25122/jml-2024-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 08/16/2024] Open
Abstract
This experimental study investigated the effect of different intracanal irrigants on the push-out bond strength of dentin in damaged anterior primary teeth. The crowns of 90 anterior primary teeth were sectioned horizontally, 1 mm above the cementoenamel junction (CEJ). Following canal preparation with K-files, all groups except the negative control received normal saline irrigation. Canals were then irrigated with either 3% or 5.25% sodium hypochlorite (NaOCl), 2% or 0.2% chlorhexidine (CHX) solution (except negative and positive controls). The roots were filled with Metapex material and covered with a calcium hydroxide liner. In root canals, the bond was applied by self-etching and then light-cured for 20 seconds before canals were restored incrementally with composite. Stereomicroscopes were used to assess failure patterns. Push-out bond strengths (MPa ± SD) were: 3% NaOCl (16.92 ± 5.78), 5.25% NaOCl (8.96 ± 3.55), 2% CHX (14.76 ± 5.56), and 0.2% CHX (7.76 ± 2.93). Significant differences were seen across the irrigants regarding the push-out bond strength of dentin sections (P <0.001). The most frequent failures were adhesive and cohesive. NaOCl and CHX irrigants increased the push-out bond strength compared to controls. Compared to controls, both 3% NaOCl and 2% CHX irrigants significantly increased the push-out bond strength of dentin in non-vital anterior primary teeth.
Collapse
Affiliation(s)
- Leila Bassir
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Taravati
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeide Rahimi
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Spencer P, Ye Q, Misra A, Chandler JR, Cobb CM, Tamerler C. Engineering peptide-polymer hybrids for targeted repair and protection of cervical lesions. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 37153688 PMCID: PMC10162700 DOI: 10.3389/fdmed.2022.1007753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
By 2060, nearly 100 million people in the U.S. will be over age 65 years. One-third of these older adults will have root caries, and nearly 80% will have dental erosion. These conditions can cause pain and loss of tooth structure that interfere with eating, speaking, sleeping, and quality of life. Current treatments for root caries and dental erosion have produced unreliable results. For example, the glass-ionomer-cement or composite-resin restorations used to treat these lesions have annual failure rates of 44% and 17%, respectively. These limitations and the pressing need to treat these conditions in the aging population are driving a focus on microinvasive strategies, such as sealants and varnishes. Sealants can inhibit caries on coronal surfaces, but they are ineffective for root caries. For healthy, functionally independent elders, chlorhexidine varnish applied every 3 months inhibits root caries, but this bitter-tasting varnish stains the teeth. Fluoride gel inhibits root caries, but requires prescriptions and daily use, which may not be feasible for some older patients. Silver diamine fluoride can both arrest and inhibit root caries but stains the treated tooth surface black. The limitations of current approaches and high prevalence of root caries and dental erosion in the aging population create an urgent need for microinvasive therapies that can: (a) remineralize damaged dentin; (b) inhibit bacterial activity; and (c) provide durable protection for the root surface. Since cavitated and non-cavitated root lesions are difficult to distinguish, optimal approaches will treat both. This review will explore the multi-factorial elements that contribute to root surface lesions and discuss a multi-pronged strategy to both repair and protect root surfaces. The strategy integrates engineered peptides, novel polymer chemistry, multi-scale structure/property characterization and predictive modeling to develop a durable, microinvasive treatment for root surface lesions.
Collapse
|
4
|
Autonomous-Strengthening Adhesive Provides Hydrolysis-Resistance and Enhanced Mechanical Properties in Wet Conditions. Molecules 2022; 27:molecules27175505. [PMID: 36080272 PMCID: PMC9457668 DOI: 10.3390/molecules27175505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties.
Collapse
|
5
|
Zolfaghari A, Yun J, Singh V. Operational envelope prediction of fluoroelastomer seals for downhole operation in the oil and gas industry. J Appl Polym Sci 2022. [DOI: 10.1002/app.51575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Jushik Yun
- Houston Enabling Technology Group, 3MT Schlumberger Texas 77478 USA
| | - Viraj Singh
- Houston Enabling Technology Group, 3MT Schlumberger Texas 77478 USA
| |
Collapse
|
6
|
Spencer P, Ye Q, Kamathewatta NJB, Woolfolk SK, Bohaty BS, Misra A, Tamerler C. Chemometrics-Assisted Raman Spectroscopy Characterization of Tunable Polymer-Peptide Hybrids for Dental Tissue Repair. FRONTIERS IN MATERIALS 2021; 8:681415. [PMID: 34113623 PMCID: PMC8186416 DOI: 10.3389/fmats.2021.681415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interfaces that biological tissues form with biomaterials are invariably defective and frequently the location where failure initiates. Characterizing the phenomena that lead to failure is confounded by several factors including heterogeneous material/tissue interfaces. To seamlessly analyze across these diverse structures presents a wealth of analytical challenges. This study aims to develop a molecular-level understanding of a peptide-functionalized adhesive/collagen hybrid biomaterial using Raman spectroscopy combined with chemometrics approach. An engineered hydroxyapatite-binding peptide (HABP) was copolymerized in dentin adhesive and dentin was demineralized to provide collagen matrices that were partially infiltrated with the peptide-functionalized adhesive. Partial infiltration led to pockets of exposed collagen-a condition that simulates defects in adhesive/dentin interfaces. The spectroscopic results indicate that co-polymerizable HABP tethered to the adhesive promoted remineralization of the defects. The spatial distribution of collagen, adhesive, and mineral as well as crystallinity of the mineral across this heterogeneous material/tissue interface was determined using micro-Raman spectroscopy combined with chemometrics approach. The success of this combined approach in the characterization of material/tissue interfaces stems from its ability to extract quality parameters that are related to the essential and relevant portions of the spectral data, after filtering out noise and non-relevant information. This ability is critical when it is not possible to separate components for analysis such as investigations focused on, in situ chemical characterization of interfaces. Extracting essential information from complex bio/material interfaces using data driven approaches will improve our understanding of heterogeneous material/tissue interfaces. This understanding will allow us to identify key parameters within the interfacial micro-environment that should be harnessed to develop durable biomaterials.
Collapse
Affiliation(s)
- Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Nilan J. B. Kamathewatta
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Sarah K. Woolfolk
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Brenda S. Bohaty
- Department of Pediatric Dentistry, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil Engineering, University of Kansas, Lawrence, KS, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
7
|
Sarikaya R, Ye Q, Song L, Tamerler C, Spencer P, Misra A. Probing the mineralized tissue-adhesive interface for tensile nature and bond strength. J Mech Behav Biomed Mater 2021; 120:104563. [PMID: 33940485 DOI: 10.1016/j.jmbbm.2021.104563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/20/2022]
Abstract
The mechanical performance of the dentin-adhesive interface contributes significantly to the failure of dental composite restorations. Rational material design can lead to enhanced mechanical performance, but this requires accurate characterization of the mechanical behavior at the dentin-adhesive interface. The mechanical performance of the interface is typically characterized using bond strength tests, such as the micro-tensile test. These tests are plagued by multiple limitations including large variations in the test results. The challenges associated with conventional tensile tests limit our ability to unravel the complex relationships that affect mechanical behavior at the dentin-adhesive interface. This study used the diametral compression test to overcome the challenges inherent in conventional bond strength tests. The bovine femur cortical bone tissue was considered as a surrogate material (the mineralized tissue) for human dentin. Two different adhesive formulations, which differed by means of their self-strengthening properties, were studied. The tensile behavior of the mineralized tissue, the adhesive polymer, and the bond strength of the mineralized tissue - adhesive interface was determined using the diametral compression test. The diametral compression test improved the repeatability for both the tensile and bond strength tests. The rate dependent mechanical behavior was observed for both single material and interfacial material systems. The tensile strength and bond strength of the mineralized tissue-adhesive interface was greater for the self-strengthening formulation as compared to the control.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Department of Mechanical and Aerospace Engineering, Trine University, 1 University Ave, Angola, IN, 46703, USA; Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA.
| |
Collapse
|
8
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
9
|
Sarikaya R, Song L, Ye Q, Misra A, Tamerler C, Spencer P. Evolution of Network Structure and Mechanical Properties in Autonomous-Strengthening Dental Adhesive. Polymers (Basel) 2020; 12:polym12092076. [PMID: 32932724 PMCID: PMC7570171 DOI: 10.3390/polym12092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
The inherent degradation property of most dental resins in the mouth leads to the long-term release of degradation by-products at the adhesive/tooth interface. The by-products increase the virulence of cariogenic bacteria, provoking a degradative positive-feedback loop that leads to physicochemical and mechanical failure. Photoinduced free-radical polymerization and sol‒gel reactions have been coupled to produce a novel autonomous-strengthening adhesive with enhanced hydrolytic stability. This paper investigates the effect of network structure on time-dependent mechanical properties in adhesives with and without autonomous strengthening. Stress relaxation was conducted under 0.2% strain for 8 h followed by 40 h recovery in water. The stress‒time relationship is analyzed by nonlinear least-squares data-fitting. The fitted Prony series predicts the sample’s history under monotonic loading. Results showed that the control failed after the first loading‒unloading‒recovery cycle with permanent deformation. While for the experimental sample, the displacement was almost completely recovered and the Young’s modulus increased significantly after the first test cycle. The experimental polymer exhibited higher degree of conversion, lower leachate, and time-dependent stiffening characteristics. The autonomous-strengthening reaction persists in the aqueous environment leading to a network with enhanced resistance to deformation. The results illustrate a rational approach for tuning the viscoelasticity of durable dental adhesives.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Correspondence: (Q.Y.); (P.S.); Tel.: +1-785-864-1746 (Q.Y.); +1-785-864-8140 (P.S.); Fax: +1-785-864-1742 (Q.Y.); +1-785-864-1742 (P.S.)
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Civil Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; (R.S.); (L.S.); (A.M.); (C.T.)
- Department of Mechanical Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Correspondence: (Q.Y.); (P.S.); Tel.: +1-785-864-1746 (Q.Y.); +1-785-864-8140 (P.S.); Fax: +1-785-864-1742 (Q.Y.); +1-785-864-1742 (P.S.)
| |
Collapse
|
10
|
Wang X, Zhou J, Kang D, Swain MV, Menčík J, Jian Y, Zhao K. The bulk compressive creep and recovery behavior of human dentine and resin-based dental materials. Dent Mater 2020; 36:366-376. [PMID: 31983468 DOI: 10.1016/j.dental.2020.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate and compare the viscoelastic properties of dentine and resin-based dental materials by bulk compressive test and the Burgers model. MATERIALS AND METHODS Sound dentine, three resin composites as well as a resin-based cement were prepared into cylindrical specimens (n = 8). A bulk compressive creep test was applied with a constant load of 300 N (23.9 MPa) for 2 h, followed by another 2 h recovery. The maximum strain, creep stain, percentage of recovery and permanent set was measured using a linear variable displacement transducer. The viscoelastic properties were characterized via the Burgers model, and the instantaneous elastic, viscous as well as elastic delayed deformation were separated from the total strain. Data were analysed via ANOVA (or Welch's Test) and Tukey (or Games-Howell Test) with a significance level of 0.05. RESULTS Sound dentine presented the lowest maximum strain, creep strain, permanent set and the highest percentage of recovery, followed by 3 resin composites with comparable parameters, while the cement showed a significantly higher maximum strain, permanent set and lower percentage of recovery (p < 0.001). The Burgers model presented acceptable fits for characterization viscoelastic processes of both dentine and resin-based dental materials. Viscous and elastic delayed strain of dentine was significantly lower than those for tested materials (p < 0.001) with the highest instantaneous elastic strain percentage. Similar viscous and delayed strain was found among the 4 resin-based materials (p > 0.05). SIGNIFICANCE Sound dentine exhibited superior creep stability compared to resin-based dental materials. The viscous deformation in sound dentine could be ignored when loading parallel to dentine tubules.
Collapse
Affiliation(s)
- Xiaodong Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Jing Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Dehua Kang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Michael V Swain
- AMME, University of Sydney, NSW 2006, Australia; Don State Technical University, Rostov-on Don, Russia.
| | - Jaroslav Menčík
- Department of Mechanics, Materials and Machine Parts, Faculty of Transport Sciences, University of Pardubice, Czech Republic.
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Ke Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Engineering Research Center of Technology and Materials for Oral Reconstruction, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
11
|
Ye Q, Abedin F, Parthasarathy R, Spencer P. Photoinitiators in Dentistry: Challenges and Advances. PHOTOPOLYMERISATION INITIATING SYSTEMS 2018. [DOI: 10.1039/9781788013307-00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photopolymerization is used in a wide range of clinical applications in dentistry and the demand for dental materials that can restore form, function and esthetics is increasing rapidly. Simultaneous with this demand is the growing need for photoinitiators that provide effective and efficient in situ polymerization of dental materials using visible light irradiation. This chapter reviews the fundamentals of Type I and II photoinitiators. The advantages and disadvantages of these photoinitiators will be considered with a particular focus on parameters that affect the polymerization process in the oral cavity. The chapter examines recent developments in photoinitiators and opportunities for future research in the design and development of photoinitiators for dental applications. Future research directions that employ computational models in conjunction with iterative synthesis and experimental methods will also be explored in this chapter.
Collapse
Affiliation(s)
- Qiang Ye
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| | - Farhana Abedin
- Electromechanical Engineering Technology program, College of Engineering, California State Polytechnic University Pomona 3801 W. Temple Ave Pomona CA 91768 USA
| | - Ranganathan Parthasarathy
- Nanomaterials Research Lab, Tennessee State University 3500 John A Merritt Blvd Nashville TN 37209 USA
| | - Paulette Spencer
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
- Department of Mechanical Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| |
Collapse
|
12
|
Gostynska N, Shankar Krishnakumar G, Campodoni E, Panseri S, Montesi M, Sprio S, Kon E, Marcacci M, Tampieri A, Sandri M. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Biomed Mater 2017; 12:055002. [DOI: 10.1088/1748-605x/aa7694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Seyedkavoosi S, Zaytsev D, Drach B, Panfilov P, Gutkin MY, Sevostianov I. Fraction-exponential representation of the viscoelastic properties of dentin. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 2017; 111:52-60. [PMID: 29062144 PMCID: PMC5650063 DOI: 10.1016/j.ijengsci.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose the fraction-exponential description of the viscoelastic properties of dentin. Creep tests are performed on specimens cut from the molar coronal part. Four parameters determining instantaneous and long term Young's moduli as well as the relaxation time are extracted from the experimental data. The same procedure is repeated using the experimental measurements of Jantarat et al (2002) for the specimens cut from the root part of incisor. Physical meaning of the parameters and the difference between them for different sets of specimens are discussed.
Collapse
Affiliation(s)
- Seyedali Seyedkavoosi
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Dmitry Zaytsev
- Department of Physics, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Borys Drach
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Peter Panfilov
- Department of Physics, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Mikhail Yu. Gutkin
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, 199178, Russia
- Department of Mechanics and Control Processes, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
- ITMO University, St. Petersburg, 197101, Russia
| | - Igor Sevostianov
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
14
|
Song L, Ye Q, Ge X, Misra A, Tamerler C, Spencer P. Self-Strengthening Hybrid Dental Adhesive via Visible-light Irradiation Triple Polymerization. RSC Adv 2016; 6:52434-52447. [PMID: 27774144 DOI: 10.1039/c6ra09933e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A self-strengthening methacrylate-based dental adhesive system was developed by introducing an epoxy cyclohexyl trimethoxysilane (TS) which contains both epoxy and methoxysilyl functional groups. The experimental formulation, HEMA/BisGMA/TS (22.5/27.5/50, wt%), was polymerized by visible-light. Real-time Fourier transform infrared spectroscopy (FTIR) was used to investigate in situ the free radical polymerization of methacrylate, ring-opening cationic polymerization of epoxy, and photoacid-induced sol-gel reactions. Among the three simultaneous reactions, the reaction rate of the free radical polymerization was the highest and the hydrolysis/condensation rate was the lowest. With 40s-irradiation, the degrees of conversion of the double bond and epoxy groups at 600 s were 73.2±1.2%, 87.9±2.4%, respectively. Hydrolysis of the methoxysilyl group was initially <5%, and increased gradually to about 50% after 48 h dark storage. Photoacids generated through the visible-light-induced reaction were effective in catalyzing both epoxy ring-opening polymerization and methoxysilyl sol-gel reaction. The mechanical properties of copolymers made with TS concentrations from 5 to 35 wt% were obtained using dynamic mechanical analysis (DMA). In wet conditions, the storage moduli at 70 °C and glass transition temperature were significantly higher than that of the control (p<0.05); these properties increased with TS concentration and storage time. The post reaction of hydrolysis/condensation of alkoxysilane could provide persistent strengthening whether in a neutral or acidic environment and these characteristics could lead to enhanced mechanical properties in the oral environment. The cumulative amount of leached species decreased significantly in the TS-containing copolymers. These results provide valuable information for the development of dental adhesives with reduced leaching of methacrylate monomers and enhanced mechanical properties under the wet, oral environment.
Collapse
Affiliation(s)
- Linyong Song
- University of Kansas, Bioengineering Research Center, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Qiang Ye
- University of Kansas, Bioengineering Research Center, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Xueping Ge
- University of Kansas, Bioengineering Research Center, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Anil Misra
- University of Kansas, Bioengineering Research Center, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.; University of Kansas, Department of Civil Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- University of Kansas, Bioengineering Research Center, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.; University of Kansas, Department of Mechanical Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- University of Kansas, Bioengineering Research Center, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.; University of Kansas, Department of Mechanical Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| |
Collapse
|
15
|
Song L, Ye Q, Ge X, Misra A, Spencer P. Mimicking nature: Self-strengthening properties in a dental adhesive. Acta Biomater 2016; 35:138-52. [PMID: 26883773 DOI: 10.1016/j.actbio.2016.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Chemical and enzymatic hydrolysis provoke a cascade of events that undermine methacrylate-based adhesives and the bond formed at the tooth/composite interface. Infiltration of noxious agents, e.g. enzymes, bacteria, and so forth, into the spaces created by the defective bond will ultimately lead to failure of the composite restoration. This paper reports a novel, synthetic resin that provides enhanced hydrolytic stability as a result of intrinsic reinforcement of the polymer network. The behavior of this novel resin, which contains γ-methacryloxyproyl trimethoxysilane (MPS) as its Si-based compound, is reminiscent of self-strengthening properties found in nature. The efforts in this paper are focused on two essential aspects: the visible-light irradiation induced (photoacid-induced) sol-gel reaction and the mechanism leading to intrinsic self-strengthening. The FTIR band at 2840cm(-1) corresponding to CH3 symmetric stretch in -Si-O-CH3 was used to evaluate the sol-gel reaction. Results from the real-time FTIR indicated that the newly developed resin showed a limited sol-gel reaction (<5%) during visible-light irradiation, but after 48h dark storage, the reaction was over 65%. The condensation of methoxysilane mainly occurred under wet conditions. The storage moduli and glass transition temperature of the copolymers increased in wet conditions with the increasing MPS content. The cumulative amounts of leached species decreased significantly when the MPS-containing adhesive was used. The results suggest that the polymethacrylate-based network, which formed first as a result of free radical initiated polymerization, retarded the photoacid-induced sol-gel reaction. The sol-gel reaction provided a persistent, intrinsic reinforcement of the polymer network in both neutral and acidic conditions. This behavior led to enhanced mechanical properties of the dental adhesives under conditions that simulate the wet, oral environment. STATEMENT OF SIGNIFICANCE A self-strengthening dental adhesive system was developed through a dual curing process, which involves the free radical photopolymerization followed by slow hydrolysis and condensation (photoacid-induced sol-gel reaction) of alkoxylsilane groups. The concept of "living" photoacid-induced sol-gel reaction with visible-light irradiation was confirmed in the polymer. The sol-gel reaction was retarded by the polymethacrylate network, which was generated first; the network extended the life and retained the activity of silanol groups. The self-strengthening behavior was evaluated by monitoring the mechanical properties of the hybrid copolymers under wet conditions. The present research demonstrates the sol-gel reaction in highly crosslinked network as a potentially powerful strategy to prolong the functional lifetime of engineered biomaterials in wet environments.
Collapse
|
16
|
Ryan AJ, O'Brien FJ. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials 2015; 73:296-307. [PMID: 26431909 DOI: 10.1016/j.biomaterials.2015.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Alan J Ryan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Song L, Ye Q, Ge X, Singh V, Misra A, Laurence JS, Berrie CL, Spencer P. Development of methacrylate/silorane hybrid monomer system: Relationship between photopolymerization behavior and dynamic mechanical properties. J Biomed Mater Res B Appl Biomater 2015; 104:841-52. [PMID: 25953619 DOI: 10.1002/jbm.b.33435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
Abstract
Resin chemistries for dental composite are evolving as noted by the introduction of silorane-based composites in 2007. This shift in the landscape from methacrylate-based composites has fueled the quest for versatile methacrylate-silorane adhesives. The objective of this study was to evaluate the polymerization behavior and structure/property relationships of methacrylate-silorane hybrid systems. Amine compound ethyl-4-(dimethylamino) benzoate (EDMAB) or silane compound tris(trimethylsilyl) silane (TTMSS) was selected as coinitiators. The mechanical properties of the copolymer were improved significantly at low concentrations (15, 25, or 35 wt %) of silorane when EDMAB was used as coinitiator. The rubbery moduli of these experimental copolymers were increased by up to 260%, compared with that of the control (30.8 ± 1.9 MPa). Visible phase separation appeared in these formulations if the silorane concentrations in the formulations were 50-75 wt %. The use of TTMSS as coinitiator decreased the phase separation, but there was a concomitant decrease in mechanical properties. In the neat methacrylate formulations, the maximum rates of free-radical polymerization with EDMAB or TTMSS were 0.28 or 0.06 s(-1) , respectively. In the neat silorane resin, the maximum rates of cationic ring-opening polymerization with EDMAB or TTMSS were 0.056 or 0.087 s(-1) , respectively. The phase separation phenomenon may be attributed to differences in the rates of free-radical polymerization of methacrylates and cationic ring-opening polymerization of silorane. In the hybrid systems, free-radical polymerization initiated with EDMAB led to higher crosslink density and better mechanical properties under dry/wet conditions. These beneficial effects were, however, associated with an increase in heterogeneity in the network structure. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 841-852, 2016.
Collapse
Affiliation(s)
- Linyong Song
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045
| | - Qiang Ye
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045
| | - Xueping Ge
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045
| | - Viraj Singh
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, 66045
| | - Anil Misra
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045.,Department of Civil Engineering, University of Kansas, Lawrence, Kansas, 66045
| | - Jennifer S Laurence
- Department of Pharmaceutical Chemistry, University of Kansas, MRB, Lawrence, Kansas, 66047
| | - Cindy L Berrie
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045
| | - Paulette Spencer
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
18
|
Spencer P, Ye Q, Misra A, Goncalves SEP, Laurence JS. Proteins, pathogens, and failure at the composite-tooth interface. J Dent Res 2014; 93:1243-9. [PMID: 25190266 DOI: 10.1177/0022034514550039] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.
Collapse
Affiliation(s)
- P Spencer
- Department of Mechanical Engineering Bioengineering Research Center
| | - Q Ye
- Bioengineering Research Center
| | - A Misra
- Bioengineering Research Center Department of Civil Engineering, University of Kansas, Lawrence, KS, USA
| | - S E P Goncalves
- School of Dentistry of São José dos Campos, UNESP, Univ Estadual Paulista, São José dos Campos, SP, Brazil
| | - J S Laurence
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|