1
|
Tian Z, Zhao Z, Rausch MA, Behm C, Shokoohi-Tabrizi HA, Andrukhov O, Rausch-Fan X. In Vitro Investigation of Gelatin/Polycaprolactone Nanofibers in Modulating Human Gingival Mesenchymal Stromal Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7508. [PMID: 38138649 PMCID: PMC10744501 DOI: 10.3390/ma16247508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The aesthetic constancy and functional stability of periodontium largely depend on the presence of healthy mucogingival tissue. Soft tissue management is crucial to the success of periodontal surgery. Recently, synthetic substitute materials have been proposed to be used for soft tissue augmentation, but the tissue compatibility of these materials needs to be further investigated. This study aims to assess the in vitro responses of human gingival mesenchymal stromal cells (hG-MSCs) cultured on a Gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). hG-MSCs were cultured onto the GPP, VSCM, or plastic for 3, 7, and 14 days. The proliferation and/or viability were measured by cell counting kit-8 assay and resazurin-based toxicity assay. Cell morphology and adhesion were evaluated by microscopy. The gene expression of collagen type I, alpha1 (COL1A1), α-smooth muscle actin (α-SMA), fibroblast growth factor (FGF-2), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta-1 (TGF-β1), focal adhesion kinase (FAK), integrin beta-1 (ITG-β1), and interleukin 8 (IL-8) was investigated by RT-qPCR. The levels of VEGF-A, TGF-β1, and IL-8 proteins in conditioned media were tested by ELISA. GPP improved both cell proliferation and viability compared to VSCM. The cells grown on GPP exhibited a distinct morphology and attachment performance. COL1A1, α-SMA, VEGF-A, FGF-2, and FAK were positively modulated in hG-MSCs on GPP at different investigation times. GPP increased the gene expression of TGF-β1 but had no effect on protein production. The level of ITG-β1 had no significant changes in cells seeded on GPP at 7 days. At 3 days, notable differences in VEGF-A, TGF-β1, and α-SMA expression levels were observed between cells seeded on GPP and those on VSCM. Meanwhile, GPP showed higher COL1A1 expression compared to VSCM after 14 days, whereas VSCM demonstrated a more significant upregulation in the production of IL-8. Taken together, our data suggest that GPP electrospun nanofibers have great potential as substitutes for soft tissue regeneration in successful periodontal surgery.
Collapse
Affiliation(s)
- Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Hassan Ali Shokoohi-Tabrizi
- Core Facility Applied Physics, Laser and CAD/CAM Technology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria; (Z.T.); (Z.Z.); (M.A.R.); (C.B.)
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria
| |
Collapse
|
2
|
Shi S, Ou X, Cheng D. How Advancing is Peripheral Nerve Regeneration Using Nanofiber Scaffolds? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:6763-6779. [PMID: 38026517 PMCID: PMC10657550 DOI: 10.2147/ijn.s436871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Peripheral nerve injuries present significant challenges in regenerative medicine, primarily due to inherent limitations in the body's natural healing processes. In response to these challenges and with the aim of enhancing peripheral nerve regeneration, nanofiber scaffolds have emerged as a promising and advanced intervention. However, a deeper understanding of the underlying mechanistic foundations that drive the favorable contributions of nanofiber scaffolds to nerve regeneration is essential. In this comprehensive review, we make an exploration of the latent potential of nanofiber scaffolds in augmenting peripheral nerve regeneration. This exploration includes a detailed introduction to the fabrication methods of nanofibers, an analysis of the intricate interactions between these scaffolds and cellular entities, an examination of strategies related to the controlled release of bioactive agents, an assessment of the prospects for clinical translation, an exploration of emerging trends, and thorough considerations regarding biocompatibility and safety. By comprehensively elucidating the intricate structural attributes and multifaceted functional capacities inherent in nanofiber scaffolds, we aim to offer a prospective and effective strategy for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
3
|
Łopianiak I, Rzempołuch W, Civelek M, Cicha I, Ciach T, Butruk-Raszeja BA. Multilayered blow-spun vascular prostheses with luminal surfaces in Nano/Micro range: the influence on endothelial cell and platelet adhesion. J Biol Eng 2023; 17:20. [PMID: 36915145 PMCID: PMC10012602 DOI: 10.1186/s13036-023-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND In this study, two types of polyurethane-based cylindrical multilayered grafts with internal diameters ≤ 6 mm were produced by the solution blow spinning (SBS) method. The main aim was to create layered-wall prostheses differing in their luminal surface morphology. Changing the SBS process parameters, i.e. working distance, rotational speed, volume, and concentration of the polymer solution allowed to obtain structures with the required morphologies. The first type of prostheses, termed Nano, possessed nanofibrous luminal surface, and the second type, Micro, presented morphologically diverse luminal surface, with both solid and microfibrous areas. RESULTS The results of mechanical tests confirmed that designed prostheses had high flexibility (Young's modulus value of about 2.5 MPa) and good tensile strength (maximum axial load value of about 60 N), which meet the requirements for vascular prostheses. The influence of the luminal surface morphology on platelet adhesion and the attachment of endothelial cells was investigated. Both surfaces did not cause hemolysis in contact with blood, the percentage of platelet-occupied area for Nano and Micro surfaces was comparable to reference polytetrafluoroethylene (PTFE) surface. However, the change in morphology of surface-adhered platelets between Nano and Micro surfaces was visible, which might suggest differences in their activation level. Endothelial coverage after 1, 3, and 7 days of culture on flat samples (2D model) was higher on Nano prostheses as compared with Micro scaffolds. However, this effect was not seen in 3D culture, where cylindrical prostheses were colonized using magnetic seeding method. CONCLUSIONS We conclude the produced scaffolds meet the material and mechanical requirements for vascular prostheses. However, changing the morphology without changing the chemical modification of the luminal surface is not sufficient to achieve the appropriate effectiveness of endothelialization in the 3D model.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.,Doctoral School of Warsaw University of Technology, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
| | - Wiktoria Rzempołuch
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Mehtap Civelek
- Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, Erlangen, Germany
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.,Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Beata A Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.
| |
Collapse
|
4
|
Esophageal wound healing by aligned smooth muscle cell-laden nanofibrous patch. Mater Today Bio 2023; 19:100564. [PMID: 36747583 PMCID: PMC9898453 DOI: 10.1016/j.mtbio.2023.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The esophagus exhibits peristalsis via contraction of circularly and longitudinally aligned smooth muscles, and esophageal replacement is required if there is a critical-sized wound. In this study, we proposed to reconstruct esophageal tissues using cell electrospinning (CE), an advanced technique for encapsulating living cells into fibers that allows control of the direction of fiber deposition. After treatment with transforming growth factor-β, mesenchymal stem cell-derived smooth muscle cells (SMCs) were utilized for cell electrospinning or three-dimensional bioprinting to compare the effects of aligned micropatterns on cell morphology. CE resulted in SMCs with uniaxially arranged and elongated cell morphology with upregulated expression levels of SMC-specific markers, including connexin 43, smooth muscle protein 22 alpha (SM22α), desmin, and smoothelin. When SMC-laden nanofibrous patches were transplanted into a rat esophageal defect model, the SMC patch promoted regeneration of esophageal wounds with an increased number of newly formed blood vessels and enhanced the SMC-specific markers of SM22α and vimentin. Taken together, CE with its advantages, such as guidance of highly elongated, aligned cell morphology and accelerated SMC differentiation, can be an efficient strategy to reconstruct smooth muscle tissues and treat esophageal perforation.
Collapse
|
5
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
6
|
Rahman SU, Ponnusamy S, Nagrath M, Arany PR. Precision-engineered niche for directed differentiation of MSCs to lineage-restricted mineralized tissues. J Tissue Eng 2022; 13:20417314211073934. [PMID: 35237403 PMCID: PMC8883406 DOI: 10.1177/20417314211073934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
The major difference between tissue healing and regeneration is the extent of instructional cues available to precisely direct the biological response. A classic example is reparative or osteodentin that is seen in response to physicochemical injury to the pulp-dentin complex. Dentin regeneration can direct the differentiation of dental stem cells using concerted actions of both soluble (biomolecules, agonists, and antagonists) and insoluble (matrix topology) cues. The major purpose of this study was to examine the synergistic combination of two discrete biomaterial approaches by utilizing nanofiber scaffolds in discrete configurations (aligned or random) with incorporated polymeric microspheres capable of controlled release of growth factors. Further, to ensure appropriate disinfection for clinical use, Radio-Frequency Glow Discharge (RFGD) treatments were utilized, followed by seeding with a mesenchymal stem cell (MSC) line. SEM analysis revealed electrospinning generated controlled architectural features that significantly improved MSC adhesion and proliferation on the aligned nanofiber scaffolds compared to randomly oriented scaffolds. These responses were further enhanced by RFGD pre-treatments. These enhanced cell adhesion and proliferative responses could be attributed to matrix-induced Wnt signaling that was abrogated by pre-treatments with anti-Wnt3a neutralizing antibodies. Next, we incorporated controlled-release microspheres within these electrospun scaffolds with either TGF-β1 or BMP4. We observed that these scaffolds could selectively induce dentinogenic or osteogenic markers (DSPP, Runx2, and BSP) and mineralization. This work demonstrates the utility of a novel, modular combinatorial scaffold system capable of lineage-restricted differentiation into bone or dentin. Future validation of this scaffold system in vivo as a pulp capping agent represents an innovative dentin regenerative approach capable of preserving tooth pulp vitality.
Collapse
Affiliation(s)
- Saeed Ur Rahman
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sasikumar Ponnusamy
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Malvika Nagrath
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Praveen R Arany
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
8
|
Thottappillil N, Nair PD. Dual source co-electrospun tubular scaffold generated from gelatin-vinyl acetate and poly-ɛ-caprolactone for smooth muscle cell mediated blood vessel engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111030. [PMID: 32994010 DOI: 10.1016/j.msec.2020.111030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Neelima Thottappillil
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India.
| |
Collapse
|
9
|
Muniyandi P, Palaninathan V, Veeranarayanan S, Ukai T, Maekawa T, Hanajiri T, Mohamed MS. ECM Mimetic Electrospun Porous Poly (L-lactic acid) (PLLA) Scaffolds as Potential Substrates for Cardiac Tissue Engineering. Polymers (Basel) 2020; 12:E451. [PMID: 32075089 PMCID: PMC7077699 DOI: 10.3390/polym12020451] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Cardiac tissue engineering (CTE) aims to generate potential scaffolds to mimic extracellular matrix (ECM) for recreating the injured myocardium. Highly porous scaffolds with properties that aid cell adhesion, migration and proliferation are critical in CTE. In this study, electrospun porous poly (l-lactic acid) (PLLA) porous scaffolds were fabricated and modified with different ECM derived proteins such as collagen, gelatin, fibronectin and poly-L-lysine. Subsequently, adult human cardiac fibroblasts (AHCF) were cultured on the protein modified and unmodified fibers to study the cell behavior and guidance. Further, the cytotoxicity and reactive oxygen species (ROS) assessments of the respective fibers were performed to determine their biocompatibility. Excellent cell adhesion and proliferation of the cardiac fibroblasts was observed on the PLLA porous fibers regardless of the surface modifications. The metabolic rate of cells was on par with the conventional cell culture ware while the proliferation rate surpassed the latter by nearly two-folds. Proteome profiling revealed that apart from being an anchorage platform for cells, the surface topography has modulated significant expression of the cellular proteome with many crucial proteins responsible for cardiac fibroblast growth and proliferation.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (P.M.); (T.U.); (T.M.); (T.H.)
| | - Vivekanandan Palaninathan
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan; (V.P.); (S.V.)
| | - Srivani Veeranarayanan
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan; (V.P.); (S.V.)
| | - Tomofumi Ukai
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (P.M.); (T.U.); (T.M.); (T.H.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan; (V.P.); (S.V.)
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (P.M.); (T.U.); (T.M.); (T.H.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan; (V.P.); (S.V.)
| | - Tatsuro Hanajiri
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (P.M.); (T.U.); (T.M.); (T.H.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan; (V.P.); (S.V.)
| | - Mohamed Sheikh Mohamed
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (P.M.); (T.U.); (T.M.); (T.H.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan; (V.P.); (S.V.)
| |
Collapse
|
10
|
Sanie-Jahromi F, Eghtedari M, Mirzaei E, Jalalpour MH, Asvar Z, Nejabat M, Javidi-Azad F. Propagation of limbal stem cells on polycaprolactone and polycaprolactone/gelatin fibrous scaffolds and transplantation in animal model. ACTA ACUST UNITED AC 2019; 10:45-54. [PMID: 31988856 PMCID: PMC6977591 DOI: 10.15171/bi.2020.06] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022]
Abstract
Introduction: This study was conducted to compare the effect of nanofibrous polycaprolactone (PCL) and PCL/gelatin (PCL/Gel) on limbal epithelial stem cell (LESC) and its efficiency for transplantation in animal model. Methods: PCL and PCL/Gel with a mass ratio of 70:30 and 50:50 was fabricated by electrospinning method. Human LESCs were cultured on PCL and PCL/Gel scaffolds and the effect of each scaffold on LESC proliferation, attachment and corneal epithelial regeneration in an animal model was evaluated, considering ease of use of scaffold and final transparency of the cornea. Results: Our data showed that PCL was more suitable than PCL/Gel for LESCs adherence, induction of epithelial morphology and proliferation. Histopathologic analysis of corneal sections from transplanted animals showed that epithelium was regenerated almost similar in PCL and PCL/Gel groups; however, vascularization and inflammation were significantly lower in the group receiving PCL. Conclusion: The represented data indicated the priority of PCL to PCL/Gel for the LESC attachment, proliferation and final outcome in an animal model of alkaline injury. This finding might be promising for cell therapy of corneal diseases.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Eghtedari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahimeh Javidi-Azad
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
11
|
Yu C, Xing M, Sun S, Guan G, Wang L. In vitro evaluation of vascular endothelial cell behaviors on biomimetic vascular basement membranes. Colloids Surf B Biointerfaces 2019; 182:110381. [PMID: 31351274 DOI: 10.1016/j.colsurfb.2019.110381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Vascular basement membrane (VBM) is a thin layer of fibrous extracellular matrix linking endothelium, and collagen type IV (COL IV) is its main composition. VBM plays a crucial role in anchoring down the endothelium to its loose connective tissue underneath. For vascular grafts, constructing biomimetic VBMs on the luminal surface is thus an effective approach to improve endothelialization in situ. In the present work, three types of polycaprolactone (PCL) membranes were produced and characterized through cell counting kit-8 (CCK-8) assay, adhesion force and elastic modulus test to examine the influence of fiber diameter and membrane composition on vascular endothelial cell (EC) behaviors. The PCL membranes with finer fibers of 54.77 nm (PCL-54) could biomimic the nanotopography of VBMs more efficiently than 544.64 nm (PCL-544), and they were more suitable for Pig iliac endothelium cells (PIECs) adhesion and proliferation, meanwhile, inducing higher elastic modulus and adhesion force of PIECs. On this foundation, we further immobilized COL IV onto PCL-54 (PCL-COL IV) to biomimic VBMs compositionally. Results showed that PIECs on PCL-COL IV exhibited the highest viability and proliferation. Besides, quantitative data indicated that the elastic modulus of the PIECs on PCL-COL IV (4441.00 Pa) was as two times higher than that on PCL-54 (2312.26 Pa), and the adhesion force grew to 1120.99 pN from 673.58 pN of PIECs on PCL-54. In summary, the PCL-COL IV membranes show high similarity with the native VBMs in terms of structure and composition, suggesting a promising potential for surface modification to vascular grafts for improved endothelialization.
Collapse
Affiliation(s)
- Chenglong Yu
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meiyi Xing
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Shibo Sun
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoping Guan
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Lu Wang
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
12
|
|
13
|
Nagarajan S, Radhakrishnan S, Kalkura SN, Balme S, Miele P, Bechelany M. Overview of Protein‐Based Biopolymers for Biomedical Application. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sakthivel Nagarajan
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
| | | | | | - Sebastien Balme
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
| | - Philippe Miele
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
- Institut Universitaire de France MESRI, 1 rue Descartes, 75231 Paris cedex 05 France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM–UMR 5635ENSCM, CNRS, University of Montpellier Montpellier 34090 France
| |
Collapse
|
14
|
Yeo GC, Mithieux SM, Weiss AS. The elastin matrix in tissue engineering and regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Verma SK, Modi A, Singh AK, Teotia R, Kadam S, Bellare J. Functionally coated polyethersulfone hollow fiber membranes: A substrate for enhanced HepG2/C3A functions. Colloids Surf B Biointerfaces 2018; 164:358-369. [DOI: 10.1016/j.colsurfb.2018.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/11/2017] [Accepted: 01/20/2018] [Indexed: 01/04/2023]
|
16
|
Başaran İ, Oral A. Grafting of poly(ε-caprolactone) on electrospun gelatin nanofiber through surface-initiated ring-opening polymerization. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- İhsan Başaran
- Department of Chemistry, Biopolymer and Advanced Polymeric Materials Laboratory, Faculty of Literature and Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
- Science Technology Application and Research Center, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ayhan Oral
- Department of Chemistry, Biopolymer and Advanced Polymeric Materials Laboratory, Faculty of Literature and Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
- Science Technology Application and Research Center, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
17
|
In vitro co-culture of epithelial cells and smooth muscle cells on aligned nanofibrous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:191-205. [DOI: 10.1016/j.msec.2017.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 01/06/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
18
|
Young BM, Shankar K, Allen BP, Pouliot RA, Schneck MB, Mikhaiel NS, Heise RL. Electrospun Decellularized Lung Matrix Scaffold for Airway Smooth Muscle Culture. ACS Biomater Sci Eng 2017; 3:3480-3492. [DOI: 10.1021/acsbiomaterials.7b00384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bethany M. Young
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Keerthana Shankar
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Brittany P. Allen
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Robert A. Pouliot
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Matthew B. Schneck
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Nabil S. Mikhaiel
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Rebecca L. Heise
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
- Department
of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, Virginia 23298, United States
| |
Collapse
|
19
|
Vasanthan KS, Subramanian A, Krishnan UM, Sethuraman S. Development of Porous Hydrogel Scaffolds with Multiple Cues for Liver Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z. Poly( l -lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:305-316. [DOI: 10.1016/j.msec.2017.02.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023]
|
21
|
Wu J, Xie L, Lin WZY, Chen Q. Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discov Today 2017; 22:1375-1384. [PMID: 28388393 DOI: 10.1016/j.drudis.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 01/08/2023]
Abstract
Neural tissue engineering aims to develop functional substitutes for damaged tissues, creating many promising opportunities in regeneration medicine and drug discovery. Biomaterial scaffolds routinely provide nerve cells with a physical support for cell growth and regeneration, yielding 3D extracellular matrix to mimic the in vivo cellular microenvironment. Among the various types of cellular scaffolds for reconstruction, biomimetic nanofibrous scaffolds are recognized as appropriate candidates by precisely controlling morphology and shape. Here, we review the current techniques in fabricating biomimetic nanofibrous scaffolds for neural tissue engineering, and describe the impact of nanofiber components on the properties of scaffolds and their uses in therapeutic models and drug development. We also discuss the current challenges and future directions of applying 3D printing and microfluidic technologies in neural tissue engineering.
Collapse
Affiliation(s)
- Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing, China; Department of Chemistry, National University of Singapore, Singapore.
| | - Lili Xie
- College of Chemistry, Fuzhou University, Fuzhou, China.
| | | | - Qiushui Chen
- Department of Chemistry, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Lin Z, Zhao X, Chen S, Du C. Osteogenic and tenogenic induction of hBMSCs by an integrated nanofibrous scaffold with chemical and structural mimicry of the bone–ligament connection. J Mater Chem B 2017; 5:1015-1027. [DOI: 10.1039/c6tb02156e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel electrospinning nanofiber collecting device was designed and utilized to fabricate an integrated PCL nanofibrous scaffold with a “random–aligned–random” structure.
Collapse
Affiliation(s)
- Zifeng Lin
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Xiujuan Zhao
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Si Chen
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Chang Du
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| |
Collapse
|
23
|
Chernonosova VS, Kvon RI, Stepanova AO, Larichev YV, Karpenko AA, Chelobanov BP, Kiseleva EV, Laktionov PP. Human serum albumin in electrospun PCL fibers: structure, release, and exposure on fiber surface. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Vera S. Chernonosova
- Meshalkin Institute of Circulation Pathology; ul. Rechkunovskaya 15 Novosibirsk 630055 Russia
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 8 Novosibirsk 630090 Russia
| | - Ren I. Kvon
- Boreskov Institute of Catalysis; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 5 Novosibirsk 630090 Russia
| | - Alena O. Stepanova
- Meshalkin Institute of Circulation Pathology; ul. Rechkunovskaya 15 Novosibirsk 630055 Russia
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 8 Novosibirsk 630090 Russia
| | - Yurii V. Larichev
- Boreskov Institute of Catalysis; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University; ul. Pirogova 2 Novosibirsk 630090 Russia
| | - Andrey A. Karpenko
- Meshalkin Institute of Circulation Pathology; ul. Rechkunovskaya 15 Novosibirsk 630055 Russia
| | - Boris P. Chelobanov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 8 Novosibirsk 630090 Russia
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 10 Novosibirsk 630090 Russia
| | - Pavel P. Laktionov
- Meshalkin Institute of Circulation Pathology; ul. Rechkunovskaya 15 Novosibirsk 630055 Russia
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch, Russian Academy of Sciences; pr. Lavrentieva 8 Novosibirsk 630090 Russia
| |
Collapse
|
24
|
Kuppan P, Sethuraman S, Krishnan UM. Interaction of human smooth muscle cells on random and aligned nanofibrous scaffolds of PHBV and PHBV-gelatin. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1163562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Production of a Self-Aligned Scaffold, Free of Exogenous Material, from Dermal Fibroblasts Using the Self-Assembly Technique. Dermatol Res Pract 2016; 2016:5397319. [PMID: 27051415 PMCID: PMC4804048 DOI: 10.1155/2016/5397319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Many pathologies of skin, especially ageing and cancer, involve modifications in the matrix alignment. Such tissue reorganization could have impact on cell behaviour and/or more global biological processes. Tissue engineering provides accurate study model by mimicking the skin and it allows the construction of versatile tridimensional models using human cells. It also avoids the use of animals, which gave sometimes nontranslatable results. Among the various techniques existing, the self-assembly method allows production of a near native skin, free of exogenous material. After cultivating human dermal fibroblasts in the presence of ascorbate during two weeks, a reseeding of these cells takes place after elevation of the resulting stroma on a permeable ring and culture pursued for another two weeks. This protocol induces a clear realignment of matrix fibres and cells parallel to the horizon. The thickness of this stretched reconstructed tissue is reduced compared to the stroma produced by the standard technique. Cell count is also reduced. In conclusion, a new, easy, and inexpensive method to produce aligned tissue free of exogenous material could be used for fundamental research applications in dermatology.
Collapse
|
26
|
Guarino V, Cirillo V, Ambrosio L. Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Rev Med Devices 2015; 13:83-102. [PMID: 26619260 DOI: 10.1586/17434440.2016.1126505] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the last decade, bicomponent fibers have been proposed to fabricate bio-inspired systems for tissue repair, regenerative medicine, medical healthcare and clinical applications. In comparison with monocomponent fibers, key advantage concerns their ability of self-adapting to the physiological conditions through an extended pattern of signals--morphological, chemical and physical ones--confined at the single fiber level. Hydrophobic/hydrophilic phases may be variously organized by tuneable processing modes (i.e., blending, core/shell, interweaving) thus offering different benefits in terms of biological activity, fluid sorption and molecular transport properties (first generation). The possibility to efficiently graft cell-adhesive proteins and peptide sequences onto the fiber surface mediated by spacers or impregnating hydrogels allows to trigger cell late activities by a controlled and sustained release in vitro of specific biomolecules (i.e., morphogens, growth factors). Here, we introduce an overview of current approaches based on bicomponent fiber use as extra cellular matrix analogs with cell-instructive functions and hierarchal organization of living tissues.
Collapse
Affiliation(s)
- Vincenzo Guarino
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| | - Valentina Cirillo
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| | - Luigi Ambrosio
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| |
Collapse
|
27
|
Zhong J, Zhang H, Yan J, Gong X. Effect of nanofiber orientation of electrospun nanofibrous scaffolds on cell growth and elastin expression of muscle cells. Colloids Surf B Biointerfaces 2015; 136:772-8. [PMID: 26520049 DOI: 10.1016/j.colsurfb.2015.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 01/09/2023]
Abstract
Tissue regeneration after smooth muscle tissue injury is a pivotal issue in tissue engineering. Good artificial scaffolds to continuously form long thin spindle-shaped smooth muscle cells in the damaged muscle tissues are important for tissue regeneration. In this work, poly(lactide-co-glycolide) (PLGA) and poly(ϵ-caprolactone) (PCL) were used to fabricate aligned or random electrospun nanofibrous scaffolds (ENSs) by using electrospinning technique. The cell growth and elastin expression of human vascular smooth muscle cells (HVSMCs) on these membranes were analyzed. Smooth PLGA/PCL film was used as control. The experimental results showed that the aligned ENS could maintain cell shapes of HVSMCs during the culture process. During the HVSMCs proliferation process, elastin expression firstly increase due to cell proliferation, and then decrease due to elastin degradation by elastase secreted by the cells. All these results suggest that aligned PLGA/PCL ENS can be a promising candidate for cell regeneration after smooth muscle tissue injury.
Collapse
Affiliation(s)
- Jian Zhong
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China.
| | - Huan Zhang
- Iowa State University, Ames Laboratory, Ames, IA 50010, USA
| | - Juan Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xiao Gong
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|