1
|
Scanu A, Luisetto R, Oliviero F, Galuppini F, Lazzarin V, Pennelli G, Masiero S, Punzi L. Bactericidal/Permeability-Increasing Protein Downregulates the Inflammatory Response in In Vivo Models of Arthritis. Int J Mol Sci 2022; 23:ijms232113066. [PMID: 36361854 PMCID: PMC9656099 DOI: 10.3390/ijms232113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the effects of bactericidal/permeability-increasing protein (BPI) alone or in combination with hyaluronic acid (HA) in two animal models: collagen-induced arthritis (CIA) and crystal-induced inflammation. In CIA, mice were intraperitoneally injected with PBS, HA, or BPI plus or minus HA, twice a week for 2 months, and then euthanized to collect paw and blood. Arthritis was assessed in ankle joints by clinical and histological evaluation. Pathogenic crystals were intraperitoneally injected in mice plus or minus BPI, or with a composition of BPI and HA. After sacrifice, total and differential leukocyte counts were determined. Cytokine levels were measured in serum and peritoneal fluids. In CIA mice, BPI improved clinical and histological outcomes (histological scores ≥2-fold), and downregulated inflammatory mediators (47–93%). In crystal-induced inflammation, BPI reduced leukocyte infiltration (total count: ≥60%; polymorphonuclear cells: ≥36%) and inhibited cytokine production (35–74%). In both models, when mice were co-treated with BPI and HA, the improvement of all parameters was greater than that observed after administration of the two substances alone. Results show that BPI attenuates CIA and inflammation in mice, and this effect is enhanced by HA co-administration. Combined use of BPI and HA represents an interesting perspective for new potential treatments in arthritis.
Collapse
Affiliation(s)
- Anna Scanu
- Rehabilitation Unit, Department of Neuroscience—DNS, University of Padova, 35128 Padova, Italy
- Correspondence:
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology—DISCOG, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Vanni Lazzarin
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience—DNS, University of Padova, 35128 Padova, Italy
| | - Leonardo Punzi
- Centre for Gout and Metabolic Bone and Joint Diseases, Rheumatology, SS Giovanni and Paolo Hospital, 30122 Venice, Italy
| |
Collapse
|
2
|
Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021; 26:molecules26082391. [PMID: 33924083 PMCID: PMC8074261 DOI: 10.3390/molecules26082391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
Collapse
|
3
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Feeney E, Galesso D, Secchieri C, Oliviero F, Ramonda R, Bonassar LJ. Inflammatory and Noninflammatory Synovial Fluids Exhibit New and Distinct Tribological Endotypes. J Biomech Eng 2020; 142:111001. [PMID: 32577715 DOI: 10.1115/1.4047628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 07/25/2024]
Abstract
Inferior synovial lubrication is a hallmark of osteoarthritis (OA), and synovial fluid (SF) lubrication and composition are variable among OA patients. Hyaluronic acid (HA) viscosupplementation is a widely used therapy for improving SF viscoelasticity and lubrication, but it is unclear how the effectiveness of HA viscosupplements varies with arthritic endotype. The objective of this study was to investigate the effects of the HA viscosupplement, Hymovis®, on the lubricating properties of diseased SF from patients with noninflammatory OA and inflammatory arthritis (IA). The composition (cytokine, HA, and lubricin concentrations) of the SF was measured as well as the mechanical properties (rheology, tribology) of the SF alone and in a 1:1 mixture with the HA viscosupplement. Using rotational rheometry, no difference in SF viscosity was detected between disease types, and the addition of HA significantly increased all fluids' viscosities. In noninflammatory OA SF, friction coefficients followed a typical Stribeck pattern, and their magnitude was decreased by the addition of HA. While some of the IA SF also showed typical Stribeck behavior, a subset showed more erratic behavior with highly variable and larger friction coefficients. Interestingly, this aberrant behavior was not eliminated by the addition of HA, and it was associated with low concentrations of lubricin. Aberrant SF exhibited significantly lower effective viscosities compared to noninflammatory OA and IA SF with typical tribological behavior. Collectively, these results suggest that different endotypes of arthritis exist with respect to lubrication, which may impact the effectiveness of HA viscosupplements in reducing friction.
Collapse
Affiliation(s)
- Elizabeth Feeney
- Nancy and Peter Meinig School of Biomedical Engineering, Cornell University, Weill Hall 152 526 Campus Road, Ithaca, NY 14853
| | - Devis Galesso
- Fidia Farmaceutici S.p.A, Via Ponte della Fabbrica 3/A, Abano Terme, Padua 35031, Italy
| | - Cynthia Secchieri
- Fidia Farmaceutici S.p.A, Via Ponte della Fabbrica 3/A, Abano Terme, Padua 35031, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Via Giustiniani, 2, Padua 35128, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Via Giustiniani, 2, Padua 35128, Italy
| | - Lawrence J Bonassar
- Nancy and Peter Meinig School of Biomedical Engineering, Cornell University, Weill Hall 152, 526 Campus Road, Ithaca, NY 14853; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Weill Hall 149, 526 Campus Road, Ithaca, NY 14853
| |
Collapse
|
5
|
Paolella F, Gabusi E, Manferdini C, Schiavinato A, Lisignoli G. Specific concentration of hyaluronan amide derivative induces osteogenic mineralization of human mesenchymal stromal cells: Evidence of RUNX2 and COL1A1 genes modulation. J Biomed Mater Res A 2019; 107:2774-2783. [PMID: 31408271 DOI: 10.1002/jbm.a.36780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
Hyaluronic acid (HA) is an ideal material for tissue regeneration. The aim of this study was to investigate whether a hyaluronan amide derivative (HAD) can enhance the mineralization of human mesenchymal stem cells (hMSCs). Osteogenically induced hMSCs cultured with or without HAD at different concentrations (0.5 mg/ml or 1 mg/ml) were analyzed for mineral matrix deposition, metabolic activity, cellular proliferation, and the expression of 14 osteogenic genes. Unmodified HA (HYAL) was used as control. We demonstrated that only cells treated daily until day 28 with 0.5 mg/ml HAD, but not with 1 mg/ml of HAD and HYAL, showed a significant induction of mineralization at day 14 compared to the osteogenic control group. HAD at both concentrations tested, significantly decreased the expression of the proliferating marker MKI67 at day 2. By contrast, increased metabolic activity was induced only by HYAL from day 14. HAD at both concentrations significantly down modulated SNAI2, DLX5, RUNX2, COL1A1, and IBSP genes, while significantly up regulated COL15A1. The induction of mineralization of 0.5 mg/ml of HAD at day 14 was significantly dependent on a specific modulation of RUNX2 and COL1A1. Our data demonstrate that only 0.5 mg/ml of HAD, but not HYAL, modulated hMSCs osteogenic differentiation, suggesting that the physicochemical features and concentration of HA products could differently affect osteogenic maturation.
Collapse
Affiliation(s)
- Francesca Paolella
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Elena Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Cristina Manferdini
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | | | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| |
Collapse
|
6
|
Altman R, Bedi A, Manjoo A, Niazi F, Shaw P, Mease P. Anti-Inflammatory Effects of Intra-Articular Hyaluronic Acid: A Systematic Review. Cartilage 2019; 10:43-52. [PMID: 29429372 PMCID: PMC6376563 DOI: 10.1177/1947603517749919] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is one of the leading causes of disability in the adult population. Common nonoperative treatment options include nonsteroidal anti-inflammatory drugs (NSAIDs), intra-articular corticosteroids, and intra-articular injections of hyaluronic acid (HA). HA is found intrinsically within the knee joint providing viscoelastic properties to the synovial fluid. HA therapy provides anti-inflammatory relief through a number of different pathways, including the suppression of pro-inflammatory cytokines and chemokines. METHODS We conducted a systematic review to summarize the published literature on the anti-inflammatory properties of hyaluronic acid in osteoarthritis. Included articles were categorized based on the primary anti-inflammatory responses described within them, by the immediate cell surface receptor protein assessed within the article, or based on the primary theme of the article. Key findings aimed to describe the macromolecules and inflammatory-mediated responses associated with the cell transmembrane receptors. RESULTS Forty-eight articles were included in this systematic review that focused on the general anti-inflammatory effects of HA in knee OA, mediated through receptor-binding relationships with cluster determinant 44 (CD44), toll-like receptor 2 (TLR-2) and 4 (TLR-4), intercellular adhesion molecule-1 (ICAM-1), and layilin (LAYN) cell surface receptors. Higher molecular weight HA (HMWHA) promotes anti-inflammatory responses, whereas short HA oligosaccharides produce inflammatory reactions. CONCLUSIONS Intra-articular HA is a viable therapeutic option in treating knee OA and suppressing inflammatory responses. HMWHA is effective in suppressing the key macromolecules that elicit the inflammatory response by short HA oligosaccharides.
Collapse
Affiliation(s)
- Roy Altman
- Division of Rheumatology and Immunology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA,Roy Altman, 9854 West Bald Mountain Court, Santa Clarita, CA 91390, USA.
| | - Asheesh Bedi
- Chief of Sports Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ajay Manjoo
- Department of Orthopedics, McMaster University, Hamilton, Ontario, Canada
| | - Faizan Niazi
- Ferring Pharmaceuticals Inc., Parsippany, NJ, USA
| | - Peter Shaw
- Ferring Pharmaceuticals Inc., Parsippany, NJ, USA
| | - Philip Mease
- Swedish-Providence-St. Joseph’s Health Systems, Seattle, WA, USA,University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Muramatsu K, Tajima Y, Kaneko R, Yanagita Y, Hirai H, Hiura N. Characterization of poly(L-glutamic acid)-grafted hyaluronan as a novel candidate medicine and biomedical device for intra-articular injection. J Biomed Mater Res A 2017; 105:3006-3016. [DOI: 10.1002/jbm.a.36155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kazuaki Muramatsu
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Yuya Tajima
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Rin Kaneko
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Yuta Yanagita
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Hiroyuki Hirai
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Nana Hiura
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| |
Collapse
|
8
|
Lin X, Wang W, Zhang W, Zhang Z, Zhou G, Cao Y, Liu W. Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation. Tissue Eng Part C Methods 2017; 23:86-97. [PMID: 28056722 DOI: 10.1089/ten.tec.2016.0373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xunxun Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
9
|
Effects of 4-methylumbelliferone and high molecular weight hyaluronic acid on the inflammation of corneal stromal cells induced by LPS. Graefes Arch Clin Exp Ophthalmol 2016; 255:559-566. [DOI: 10.1007/s00417-016-3561-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/30/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
|
10
|
Gabusi E, Paolella F, Manferdini C, Gambari L, Schiavinato A, Lisignoli G. Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. Connect Tissue Res 2015; 56:440-51. [PMID: 26075645 DOI: 10.3109/03008207.2015.1047928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Increased age is the most prominent risk factor for the initiation and progression of osteoarthritis (OA). The effects of human growth hormone (hGH) combined or not with hyaluronan amide derivative (HAD) were evaluated on human OA chondrocytes, to define their biological action and potentiality in OA treatment. MATERIAL AND METHODS Cell viability, metabolic activity, gene expression and factors released were tested at different time points on chondrocytes treated with different concentrations of hGH (0.01-10 μg/ml) alone or in combination with HAD (1 mg/ml). RESULTS We found that OA chondrocytes express GH receptor and that the different doses of hGH tested did not affect cell viability, metabolic activity or the expression of collagen type 2, 1, or 10 nor did it induce the release of IGF-1 or FGF-2. Conversely, hGH treatment increased the expression of hyaluronan receptor CD44. HAD combined with hGH reduced metabolic activity, IL6 release and gene expression, but not the suppressor of cytokine signaling 2 (SOCS2), which was significantly induced and translocated into the nucleus. The parameters analyzed, independently of the treatments used proportionally decreased with increasing age of the patients. CONCLUSIONS hGH only induced CD44 receptor on OA chondrocytes but did not affect other parameters, such as chondrocytic gene markers or IGF-1 or FGF-2 release. HAD reduced all the effects induced by hGH partially through a significant induction of SOCS2. These data show that GH or HAD treatment does not influence the response of the OA chondrocytes, thus the modulation of cellular response is age-independent.
Collapse
Affiliation(s)
- Elena Gabusi
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy
| | | | - Cristina Manferdini
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | - Laura Gambari
- b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | | | - Gina Lisignoli
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| |
Collapse
|
11
|
Roy K, Kanwar RK, Kanwar JR. Molecular targets in arthritis and recent trends in nanotherapy. Int J Nanomedicine 2015; 10:5407-20. [PMID: 26345140 PMCID: PMC4554438 DOI: 10.2147/ijn.s89156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy.
Collapse
Affiliation(s)
- Kislay Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|