1
|
Li H, Wilhelm M, Baumbach CM, Hacker MC, Szardenings M, Rischka K, Koenig A, Schulz-Kornas E, Fuchs F, Simon JC, Lethaus B, Savković V. Laccase-Treated Polystyrene Surfaces with Caffeic Acid, Dopamine, and L-3,4-Dihydroxyphenylalanine Substrates Facilitate the Proliferation of Melanocytes and Embryonal Carcinoma Cells NTERA-2. Int J Mol Sci 2024; 25:5927. [PMID: 38892114 PMCID: PMC11172616 DOI: 10.3390/ijms25115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.
Collapse
Affiliation(s)
- Hanluo Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan 430068, China;
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Martin Wilhelm
- Department of Ear, Nose and Throat Diseases, and Head and Neck Surgery, University of Greifswald, 17475 Greifswald, Germany;
| | - Christina Marie Baumbach
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University of Halle-Wittenberg, 06108 Halle, Germany;
| | - Michael C. Hacker
- Institute of Pharmaceutic Technology and Biopharmaceutics, Department of Pharmacy, Math.-Nat. Faculty, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
- Institute for Pharmacy, Faculty of Medicine, Leipzig University, Eilenburger Straße 15 A, 04317 Leipzig, Germany
| | - Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany;
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany;
| | - Andreas Koenig
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany; (A.K.)
| | - Ellen Schulz-Kornas
- Department of Cariology, Endodontology and Periodontology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Florian Fuchs
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany; (A.K.)
| | - Jan Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
2
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
3
|
Peterson A, Nair L. Hair Follicle Stem Cells for Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:695-706. [PMID: 34238037 PMCID: PMC9419938 DOI: 10.1089/ten.teb.2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the positive outcomes of various cell therapies currently under pre-clinical and clinical studies, there is a significant interest in novel stem cell sources with unique therapeutic properties. Studies over the past two decades or so demonstrated the feasibility to isolate multipotent/pluripotent stem cells from hair follicles. The easy accessibility, high proliferation and differentiation ability as well as lack of ethical concerns associated with this stem cell source make hair follicle stem cells (HFSCs) attractive candidate for cell therapy and tissue engineering. This review discusses the various stem cell types identified in rodent and human hair follicles and ongoing studies on the potential use of HFSCs for skin, bone, cardio-vascular, and nerve tissue engineering.
Collapse
Affiliation(s)
- Alyssa Peterson
- University of Connecticut, 7712, Storrs, Connecticut, United States;
| | - Lakshmi Nair
- University of Connecticut Health Center, 21654, Orthopaedic Surgery, Farmington, Connecticut, United States;
| |
Collapse
|
4
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
5
|
Vocetkova K, Sovkova V, Buzgo M, Lukasova V, Divin R, Rampichova M, Blazek P, Zikmund T, Kaiser J, Karpisek Z, Amler E, Filova E. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. NANOMATERIALS 2020; 10:nano10091801. [PMID: 32927642 PMCID: PMC7559479 DOI: 10.3390/nano10091801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.
Collapse
Affiliation(s)
- Karolina Vocetkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
- Correspondence:
| | - Vera Sovkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Matej Buzgo
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Vera Lukasova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Radek Divin
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
| | - Pavel Blazek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Zdenek Karpisek
- Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic;
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Eva Filova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
| |
Collapse
|
6
|
Schneider M, Rother S, Möller S, Schnabelrauch M, Scharnweber D, Simon J, Hintze V, Savkovic V. Sulfated hyaluronan‐containing artificial extracellular matrices promote proliferation of keratinocytes and melanotic phenotype of melanocytes from the outer root sheath of hair follicles. J Biomed Mater Res A 2019; 107:1640-1653. [DOI: 10.1002/jbm.a.36680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Marie Schneider
- Saxon Incubator for Clinical TranslationLeipzig University TRR 67, Leipzig Germany
| | - Sandra Rother
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | | | | | - Dieter Scharnweber
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | - Jan‐Christoph Simon
- Clinic for Dermatology, Venerology and AllergologyFaculty of Medicine, Leipzig University Clinic TRR 67, Leipzig Germany
| | - Vera Hintze
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical TranslationLeipzig University TRR 67, Leipzig Germany
| |
Collapse
|
7
|
Park JY, Kyung KH, Tsukada K, Kim SH, Shiratori S. Biodegradable polycaprolactone nanofibres with β-chitosan and calcium carbonate produce a hemostatic effect. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond) 2017; 12:1335-1352. [PMID: 28520509 PMCID: PMC6661929 DOI: 10.2217/nnm-2017-0017] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Electrospun nanofibers represent a novel class of materials that show great potential in many biomedical applications including biosensing, regenerative medicine, tissue engineering, drug delivery and wound healing. In this work, we review recent advances in electrospun nanofibers for wound healing. This article begins with a brief introduction on the wound, and then discusses the unique features of electrospun nanofibers critical for wound healing. It further highlights recent studies that have used electrospun nanofibers for wound healing applications and devices, including sutures, multifunctional dressings, dermal substitutes, engineered epidermis and full-thickness skin regeneration. Finally, we finish with conclusions and future perspective in this field.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery–Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bing Liu
- Department of Surgery–Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mark A Carlson
- Departments of Surgery & Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, VA Nebraska–Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Adrian F Gombart
- Department of Biochemistry & Biophysics & Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Debra A Reilly
- Departments of Surgery–Plastic & Reconstructive Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingwei Xie
- Department of Surgery–Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Wu W, Wu XL, Ji YQ, Gao Z. Differentiation of nestin‑negative human hair follicle outer root sheath cells into neurons in vitro. Mol Med Rep 2017; 16:95-100. [PMID: 28534946 PMCID: PMC5482136 DOI: 10.3892/mmr.2017.6585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 02/21/2017] [Indexed: 01/18/2023] Open
Abstract
A specialized quiescent population of hair follicle stem cells, residing in the hair follicle outer root sheath cells (ORSCs), has previously demonstrated pluripotency for differentiation into neural stem cells (NSCs). A previous study indicated that nestin-positive hair follicle ORSCs are able to differentiate into neurons. However, little has been reported on the isolation of nestin-negative human ORSCs and whether they can successfully differentiate into neurons in vitro. In the present study, nestin-positive ORSCs were significantly reduced with a prolonged incubation time in vitro. Following 9 days of primary culture, nestin-expressing ORSCs disappeared entirely, and ORSCs remained nestin-negative following 5 days of subculture. Notably, nestin was identified in ORSCs following a three-step process of neuro-induction. In addition, neruodevelopmental markers were detected in the ORSC-derived nestin-positive spherical cell mass, including the induction of the neuronal specific markers growth associated protein-43, neurotensin receptor-3 and p75 neurotrophin receptor, and also the gliocyte markers, glial fibrillary acidic protein and S100. These sphere-forming cells did not express the mature neuron-associated markers neurofilament medium, neuronal nuclei and neuron-specific enolase, which suggested that sphere-forming cells may preferentially differentiate into neural stem cell-like cells as opposed to mature neurons or neurogliocyte. In conclusion, ORSC-driven neural differentiation may be a suitable treatment strategy for neurodegenerative diseases and may possess an important value in regenerative medicine.
Collapse
Affiliation(s)
- Wei Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiao-Li Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yu-Qing Ji
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
10
|
Sülflow K, Schneider M, Loth T, Kascholke C, Schulz-Siegmund M, Hacker MC, Simon JC, Savkovic V. Melanocytes from the outer root sheath of human hair and epidermal melanocytes display improved melanotic features in the niche provided by cGEL, oligomer-cross-linked gelatin-based hydrogel. J Biomed Mater Res A 2016; 104:3115-3126. [PMID: 27409726 DOI: 10.1002/jbm.a.35832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Non-invasively based cell treatments of depigmented skin disorders are largely limited by means of cell sampling as much as by their routes of application. Human melanocytes cultivated from the outer root sheath of hair follicle (HUMORS) are among the cell types that fit the non-invasive concept by being cultivated out of a minimal sample: hair root. Eventual implementation of HUMORS as a graft essentially depends on a choice of suitable biocompatible, biodegradable carrier that would mechanically and biologically support the cells as transient niche and facilitate their engraftment. Hence, the melanotic features of follicle-derived HUMORS and normal human epidermal melanocytes (NHEM) in engineered scaffolds based on collagen, the usual leading candidate for graft material for a variety of skin transplantation procedures were tested. Hydrogel named cGEL, an enzymatically degraded bovine gelatin chemically cross-linked with an oligomeric copolymer synthesized from pentaerythritol diacrylate monostearate (PEDAS), maleic anhydride (MA), and N-isopropylacrylamide (NiPAAm) or diacetone acrylamide (DAAm), was used. The cGEL provided a friendly three-dimensional (3D) cultivation environment for human melanocytes with increased melanin content of the 3D cultures in comparison to Collagen Cell Carrier® (CCC), a commercially available bovine decellularized collagen membrane, and electrospun polycaprolactone (PCL) matrices. One of the cGEL variants fostered not only a dramatic increase in melanin production but also a significant enhancement of melanotic gene PAX3, PMEL, TYR, and MITF expression in comparison to that of both CCC full-length collagen and PCL scaffolds, providing a clearly superior melanocyte niche that may be a suitable candidate for grafting carriers. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3115-3126, 2016.
Collapse
Affiliation(s)
- Katharina Sülflow
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany
| | - Marie Schneider
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany
| | - Tina Loth
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Christian Kascholke
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Michael C Hacker
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Jan-Christoph Simon
- Clinic and Policlinic for Dermatology, Venereology, and Allergology, Leipzig University Clinic, Faculty of Medicine, Leipzig, Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany.
| |
Collapse
|