1
|
Li T, Li R, Zhang T, Zhang H, Song X, Zhai X, Wang J, Xing B, Hou X, Wei L. Identification, cloning, and characterization of Cherry Valley duck CD4 and its antiviral immune responses. Poult Sci 2021; 100:101262. [PMID: 34273645 PMCID: PMC8287243 DOI: 10.1016/j.psj.2021.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022] Open
Abstract
CD4 protein is a single chain transmembrane glycoprotein and has a broad functionality beyond cell-mediated immunity. In this study, we cloned the full-length coding sequence (CDS) of duck CD4 (duCD4) and analyzed its sequence and structure, and expression levels in several tissues. It consists of 1,449 nucleotides and encodes a 482 amino acid protein. The putative protein of duCD4 consisted of an N-terminal signal peptide, three immunoglobulins and one immunoglobulins-like domain in its central, one terminal transmembrane region, and a C-terminal domain of the CD4 T cell receptor. The duCD4 also has the typical signature “CXC” of CD4s. The multiple sequence alignment suggests duCD4 has four potential N-glycosylation sites and the phylogenetic analysis suggests duCD4 shares greater similarity with avian than other vertebrates. Quantitative real-time PCR analysis showed that duCD4 mRNA transcripts are widely distributed in the healthy Cherry Valley duck, and the highest level in the thymus. During the virus infection, the obvious change of duCD4 expression was observed in the spleen, lung and brain, which suggesting that duCD4 could be involved in the host's immune response to multiple types of viruses. Our research studied the characterization, tissue distribution, and antiviral immune responses of duCD4.
Collapse
Affiliation(s)
- Tianxu Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rong Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City, Shandong Province 271000, China
| | - Huihui Zhang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xingdong Song
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jinchao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Bin Xing
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xiaolan Hou
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City, Shandong Province 271000, China.
| |
Collapse
|
2
|
Bui VC, Nguyen TH. Direct monitoring of drug-induced mechanical response of individual cells by atomic force microscopy. J Mol Recognit 2020; 33:e2847. [PMID: 32212218 DOI: 10.1002/jmr.2847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023]
Abstract
Mechanical characteristics of individual cells play a vital role in many biological processes and are considered as indicators of the cells' states. Disturbances including methyl-β-cyclodextrin (MβCD) and cytochalasin D (cytoD) are known to significantly affect the state of cells, but little is known about the real-time response of single cells to these drugs in their physiological condition. Here, nanoindentation-based atomic force microscopy (AFM) was used to measure the elasticity of human embryonic kidney cells in the presence and absence of these pharmaceuticals. The results showed that depletion of cholesterol in the plasma membrane with MβCD resulted in cell stiffening whereas depolymerization of the actin cytoskeleton by cytoD resulted in cell softening. Using AFM for real-time measurements, we observed that cells mechanically responded right after these drugs were added. In more detail, the cell´s elasticity suddenly increased with increasing instability upon cholesterol extraction while it is rapidly decreased without changing cellular stability upon depolymerizing actin cytoskeleton. These results demonstrated that actin cytoskeleton and cholesterol contributed differently to the cell mechanical characteristics.
Collapse
Affiliation(s)
- Van-Chien Bui
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,ZIK HIKE, University of Greifswald, Greifswald, Germany
| | - Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany
| |
Collapse
|
3
|
CD4 and MHCII phenotypic variability of peripheral blood monocytes in dogs. PLoS One 2019; 14:e0219214. [PMID: 31269060 PMCID: PMC6608971 DOI: 10.1371/journal.pone.0219214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
In humans and mice, the detailed phenotypic and functional characterization of peripheral blood monocytes allows for identification of three monocyte subsets. There are also evidences of monocyte phenotypic heterogeneity in other species, including cattle, sheep, pig and horse. However, little is known about such variability in dogs. The aim of the study was to determine whether and how peripheral blood monocytes of healthy dogs differ in the presence of MHCII and CD4 and in the basal production of reactive oxygen species (ROS). Three distinct subsets of CD11b+CD14+ monocytes were found in peripheral blood samples of healthy dogs, based on the variations in the density of MHCII and CD4 surface molecules: MHCII+CD4- (Mo1), MHCII+CD4+ (Mo2) and MHCII-CD4+ (Mo3). The Mo2 and Mo3 were significantly lower in percentage than Mo1 but their basal ROS production was higher. Within the Mo2 and Mo3 subsets, the percentage of cells producing ROS was significantly higher comparing to cells lacking this activity. Canine peripheral blood monocytes vary in the expression of MHCII and CD4 and in the activity suggesting that cells within the three identified subsets carry out different functions. The higher production of ROS in non-activated cells within small subsets of Mo2 and Mo3 monocytes might indicate their immunomodulatory potential.
Collapse
|
4
|
Nguyen TH, Greinacher A. Distinct Binding Characteristics of Pathogenic Anti-Platelet Factor-4/Polyanion Antibodies to Antigens Coated on Different Substrates: A Perspective on Clinical Application. ACS NANO 2018; 12:12030-12041. [PMID: 30540167 DOI: 10.1021/acsnano.8b04487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The polyanion heparin, which is frequently used in patients, complexes with the platelet-derived cationic chemokine platelet factor (PF4, CXCL4). This results in the formation of anti-PF4/heparin antibodies (anti-PF4/H Abs). Anti-PF4/H Abs are classified into three groups: (i) nonpathogenic Abs (group 1) with no clinical relevance; (ii) pathogenic heparin-dependent Abs (group 2), which activate platelets and can cause the severe adverse drug effect heparin-induced thrombocytopenia (HIT); and (iii) pathogenic autoimmune-HIT Abs (group 3), in which group 3 anti-PF4/H Abs causes a HIT-like autoimmune disease in the absence of heparin. Enzyme immunoassays using PF4/H complexes coated on the solid phase for detection of anti-PF4/H Abs cannot differentiate between pathogenic and nonpathogenic anti-PF4/H Abs. By single-molecule force spectroscopy, we identify a specific feature of pathogenic group 2 and group 3 Abs antibodies that (in contrast to nonpathogenic group 1 Abs) their binding forces to PF4/H complexes coated on platelets were significantly higher compared with those of PF4/H complexes immobilized on a solid phase. Only group 3 Abs showed high binding forces to platelets without the addition of PF4. In the presence of 50 μg/mL PF4, group 2 Abs also showed high binding forces to platelets. In contrast, binding forces of group 1 Abs always remained low (<100 pN). Our findings may have major relevance for the development of clinically applicable solid-phase assays, which allow differentiation of pathogenic platelet-activating from nonpathogenic anti-PF4/H Abs. Membrane-based expression of antigens might also increase the specificity of other assays for the detection of pathogenic (auto)-antibodies in clinical medicine.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
- ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases , University of Greifswald , 17489 Greifswald , Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
| |
Collapse
|
6
|
Bui VC, Nguyen TH. The Role of Single-Molecule Force Spectroscopy in Unraveling Typical and Autoimmune Heparin-induced Thrombocytopenia. Int J Mol Sci 2018; 19:E1054. [PMID: 29614814 PMCID: PMC5979551 DOI: 10.3390/ijms19041054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/26/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023] Open
Abstract
For the last two decades, heparins have been widely used as anticoagulants. Besides numerous advantages, up to 5% patients with heparin administration suffer from a major adverse drug effect known as heparin-induced thrombocytopenia (HIT). This typical HIT can result in deep vein thrombosis, pulmonary embolism, occlusion of a limb artery, acute myocardial infarct, stroke, and a systemic reaction or skin necrosis. The basis of HIT may lead to clinical insights. Recent studies using single-molecule force spectroscopy (SMFS)-based atomic force microscopy revealed detailed binding mechanisms of the interactions between platelet factor 4 (PF4) and heparins of different lengths in typical HIT. Especially, SMFS results allowed identifying a new mechanism of the autoimmune HIT caused by a subset of human-derived antibodies in patients without heparin exposure. The findings proved that not only heparin but also a subset of antibodies induce thrombocytopenia. In this review, the role of SMFS in unraveling a major adverse drug effect and insights into molecular mechanisms inducing thrombocytopenia by both heparins and antibodies will be discussed.
Collapse
Affiliation(s)
- Van-Chien Bui
- Institute for Immunology and Transfusion Medicine, University Medicine of Greifswald, 17475 Greifswald, Germany.
| | - Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine of Greifswald, 17475 Greifswald, Germany.
- ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular, 17489 Greifswald, Germany.
| |
Collapse
|
7
|
Abstract
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.
Collapse
|
8
|
Nguyen TH. Single-molecule force spectroscopy applied to heparin-induced thrombocytopenia. J Mol Recognit 2016; 30. [PMID: 27790761 DOI: 10.1002/jmr.2585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023]
Abstract
Heparin-induced thrombocytopenia (HIT), occurring up to approximately 1% to 5% of patients receiving the antithrombotic drug heparins, has a complex pathogenesis involving multiple partners ranging from small molecules to cells/platelets. Recently, insights into the mechanism of HIT have been achieved by using single-molecule force spectroscopy (SMFS), a methodology that allows direct measurements of interactions among HIT partners. Here, the potential of SMFS in unraveling the mechanism of the initial steps in the pathogenesis of HIT at single-molecule resolution is highlighted. The new findings ranging from the molecular binding strengths and kinetics to the determination of the boundary between risk and non-risk heparin drugs or platelet-surface and platelet-platelet interactions will be reviewed. These novel results together have contributed to elucidate the mechanisms underlying HIT and demonstrate how SMFS can be applied to develop safer drugs with a reduced risk profile.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475, Greifswald, Germany.,ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|