1
|
Sugiura Y, Horie M. Fabrication of interconnected porous Ag substituted octacalcium phosphate blocks based on a dissolution-precipitation reaction. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:48. [PMID: 35639182 PMCID: PMC9156480 DOI: 10.1007/s10856-022-06672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Here, we introduce Ag substituted octacalcium phosphate (OCP-Ag) blocks with interconnected porous structure and sufficient mechanical strength as bone substitute (i.e., foam). We employed a two-step process for fabrication, which includes a setting reaction for acidic calcium phosphate granules using an acidic phosphate solution and a phase conversion process via dissolution-precipitation method in cocktail ((NH4)2HPO4-NH4NO3-NaNO3-AgNO3) solutions. The Ag contents in the fabricated OCP-Ag foams were 0.08-0.15 at%, which were sufficient in exhibiting contact antibacterial ability. The mechanical strength and porosity of the OCP-Ag foams were about 0.5 MPa and 70%, respectively. These values were sufficient for the application of the OCP-Ag foams as bone substitute. Graphical abstract.
Collapse
Affiliation(s)
- Yuki Sugiura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Masanori Horie
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
2
|
Umemoto S, Furusawa T, Unuma H, Tajika M, Sekino T. In vivo bioresorbability and bone formation ability of sintered highly pure calcium carbonate granules. Dent Mater J 2021; 40:1202-1207. [PMID: 34121021 DOI: 10.4012/dmj.2020-254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium carbonate-based bone substitutes derived from natural coral exoskeleton (aragonite) are resorbed and remodeled faster than calcium phosphate-based substitutes. However, coral species with structures appropriate for use as bone substitutes are very limited. Therefore, it is important to evaluate potential of artificial calcium carbonate ceramics as a bone substitute. In this study, calcium carbonate granules with various porosities and pore sizes were prepared by sintering a highly pure (>99.98%) calcium carbonate powder (calcite), and their resorption properties and bone formation abilities were examined in vivo for the first time. The sintered calcium carbonate was resorbed faster than β-tricalcium phosphate, which has a similar structure. However, sintered calcium carbonate did not promote new bone formation during long-term implantation. Furthermore, both resorption and new bone formation were affected by the pore structure. The optimal structures of the artificially sintered calcium carbonate bone substitute were also discussed.
Collapse
Affiliation(s)
- Shota Umemoto
- Shiraishi Central Laboratories Co., Ltd.,The Institute of Scientific and Industrial Research, Osaka University
| | - Toshitake Furusawa
- Tohoku Oral Implant Association.,Graduate School of Science and Engineering, Yamagata University
| | - Hidero Unuma
- Tohoku Oral Implant Association.,Graduate School of Science and Engineering, Yamagata University
| | | | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
3
|
Angiogenesis involvement by octacalcium phosphate-gelatin composite-driven bone regeneration in rat calvaria critical-sized defect. Acta Biomater 2019; 88:514-526. [PMID: 30776505 DOI: 10.1016/j.actbio.2019.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
Abstract
Effect of octacalcium phosphate/gelatin composite (OCP/Gel) on angiogenesis was studied by its implantation in rat calvaria critical-sized defect in relation to bone regeneration for 2 and 4 weeks. The implantation of OCP/Gel disks was analyzed by radiomorphometry using a radiopaque material perfusion (Microfil®) method and histomorphometry by hematoxylin and eosin-staining before and after the decalcification. Effect of the OCP dose in the range up to 4 mg per well on the capillary-like tube formation by human umbilical vein endothelial cells (HUVECs) was also examined in a transwell cell culture. The results showed that the blood vessels formation by OCP/Gel group was significantly higher at 2 weeks than other groups but decreased at 4 weeks during the advancement of new bone formation. The capillary-like tube formation was highest in an OCP dose of 1 mg per well while other OCP doses above or below 1 mg did not show such a stimulatory effect. The results established both in vivo and in vitro confirmed that OCP has a positive effect on angiogenesis during bone regeneration in a suitable dose ranges, suggesting that the angiogenesis stimulated by OCP could be involved in the OCP/Gel-enhanced bone regeneration. STATEMENT OF SIGNIFICANCE: We have reported that octacalcium phosphate (OCP) materials display stimulatory capacities on the bone tissue-related cells. However, the effect of OCP on the angiogenesis and its relation to the OCP-enhanced bone regeneration is unknown. This study confirmed the capacity of OCP on angiogenesis before increasing the new bone mass after the implantation of a composite of OCP and gelatin (OCP/Gel). The blood vessels formation took place associated with the area beginning of the new bone formation, which finally decreased together with development of bone formation. Because OCP was ascertained stimulating the capillary-like tube formation in HUVEC culture with a certain OCP dose, the present study is the first report showing the capacity of OCP on angiogenesis during the OCP/Gel-enhanced bone regeneration.
Collapse
|
4
|
Fukuda N, Tsuchiya A, Sunarso, Toita R, Tsuru K, Mori Y, Ishikawa K. Surface plasma treatment and phosphorylation enhance the biological performance of poly(ether ether ketone). Colloids Surf B Biointerfaces 2019; 173:36-42. [DOI: 10.1016/j.colsurfb.2018.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/05/2018] [Accepted: 09/13/2018] [Indexed: 01/29/2023]
|
5
|
Fujioka-Kobayashi M, Tsuru K, Nagai H, Fujisawa K, Kudoh T, Ohe G, Ishikawa K, Miyamoto Y. Fabrication and evaluation of carbonate apatite-coated calcium carbonate bone substitutes for bone tissue engineering. J Tissue Eng Regen Med 2018; 12:2077-2087. [PMID: 30058260 DOI: 10.1002/term.2742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
Carbonate apatite-coated calcium carbonate (CO3 Ap/CaCO3 ) was fabricated through a dissolution-precipitation reaction using CaCO3 granules as a precursor to accelerate bone replacement based on superior osteoconductivity of the CO3 Ap shell, along with Ca2+ release from the CaCO3 core and quicker resorption of the CaCO3 core. In the present study, CaCO3 , 10% CO3 Ap/CaCO3 , 30% CO3 Ap/CaCO3 , and CO3 Ap granules were fabricated and examined histologically to evaluate their potential as bone substitutes. Larger contents of CaCO3 in the granules resulted in higher Ca2+ release and promoted cell proliferation of murine preosteoblasts at 6 days compared with CO3 Ap. Interestingly, in a rabbit femur defect model, 10% CO3 Ap/CaCO3 induced significantly higher new bone formation and higher material resorption compared with CO3 Ap at 8 weeks. Nevertheless, CO3 Ap showed a superior osteoconductive potential compared with 10% CO3 Ap/CaCO3 at 8 weeks. All tested granules were most likely resorbed by cell mediation including multinucleated giant cell functions. Therefore, we conclude that CO3 Ap/CaCO3 has a positive potential for bone tissue engineering based on well-controlled calcium release, bone formation, and material resorption.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Dental Engineering, Section of Bioengineering, Division of Biomedical Science, Fukuoka Dental College, Fukuoka, Japan
| | - Hirokazu Nagai
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kenji Fujisawa
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Oral Health Sciences, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima, Japan
| | - Takaharu Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Go Ohe
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
7
|
Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells. Int J Mol Sci 2016; 17:ijms17050639. [PMID: 27164090 PMCID: PMC4881465 DOI: 10.3390/ijms17050639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022] Open
Abstract
Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.
Collapse
|