1
|
He W, MacRenaris KW, Griebel A, Kwesiga MP, Freitas E, Gillette A, Schaffer J, O'Halloran TV, Guillory II RJ. Semi-quantitative elemental imaging of corrosion products from bioabsorbable Mg vascular implants in vivo. Bioact Mater 2025; 43:225-239. [PMID: 39386222 PMCID: PMC11462046 DOI: 10.1016/j.bioactmat.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024] Open
Abstract
While metal materials historically have served as permanent implants and were designed to avoid degradation, next generation bioabsorbable metals for medical devices such as vascular stents are under development, which would elute metal ions and corrosion byproducts into tissues. The fate of these eluted products and their local distribution in vascular tissue largely under studied. In this study, we employ a high spatial resolution spectrometric imaging modality, laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) to map the metal distribution, (herein refered to as laser ablation mapping, or LAM) from Mg alloys within the mouse vascular system and approximate their local concentrations. We used a novel rare earth element bearing Mg alloy (WE22) wire implanted within the abdominal aorta of transgenic hypercholesterolemic mice (APOE-/-) to simulate a bioabsorbable vascular prosthesis for up to 30 days. We describe qualitatively and semi-quantitatively implant-derived corrosion product presence throughout the tissue cross sections, and their approximate concentrations within the various vessel structures. Additionally, we report the spatial changes of corrosion products, which we postulate are mediated by phagocytic inflammatory cells such as macrophages (MΦ's).
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith W. MacRenaris
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | | | - Maria P. Kwesiga
- Department of Biomedical Sciences, Grand Valley State University, USA
| | - Erico Freitas
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Amani Gillette
- Department of Biomedical Engineering, Morgridge Institute for Research, USA
| | | | - Thomas V. O'Halloran
- Department of Microbiology, Genetics and Immunology (MGI) and Chemistry, Michigan State University, USA
- Elemental Health Institute (EHI), Michigan State University, USA
- Quantitative Bio-Element Analysis and Mapping (QBEAM) Center, Michigan State University, USA
| | - Roger J. Guillory II
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, USA
| |
Collapse
|
2
|
Martinez DC, Borkam-Schuster A, Helmholz H, Dobkowska A, Luthringer-Feyerabend B, Płociński T, Willumeit-Römer R, Święszkowski W. Bone cells influence the degradation interface of pure Mg and WE43 materials: Insights from multimodal in vitro analysis. Acta Biomater 2024; 187:471-490. [PMID: 39168423 DOI: 10.1016/j.actbio.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
In this study, the interaction of pure Mg and WE43 alloy under the presence of osteoblast (OB) and osteoclast (OC) cells and their influence on the degradation of materials have been deeply analyzed. Since OB and OC interaction has an important role in bone remodeling, we examined the surface morphology and dynamic changes in the chemical composition and thickness of the corrosion layers formed on pure Mg and WE43 alloy by direct monoculture and coculture of pre-differentiated OB and OC cells in vitro. Electrochemical techniques examined the corrosion performance. The corrosion products were characterized using a combination of the focused ion beam (FIB), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Cell viability and morphology were assessed by fluorescent microscopy and SEM. Our findings demonstrate cell spread and attachment variations, which differ depending on the Mg substrates. It was clearly shown that cell culture groups delayed degradation processes with the lowest corrosion rate observed in the presence of OBOC coculture for the WE43 substrate. Ca-P enrichment was observed in the outer-middle region of the corrosion layer but only after 7 days of OBOC coculture on WE43 and after 14 days on the pure Mg specimens. STATEMENT OF SIGNIFICANCE: Magnesium metallic materials that can degrade over time provide distinct opportunities for orthopedic application. However, there is still a lack, especially in elucidating cell-material interface characterization. This study investigated the influence of osteoblast-osteoclast coculture in direct Mg-material contact. Our findings demonstrated that pre-differentiated osteoblasts and osteoclasts cocultured on Mg substrates influenced the chemistry of the corrosion layers. The cell spread and attachment were Mg substrate-dependent. The findings of coculturing bone cells directly on Mg materials within an in vitro model provide an effective approach for studying the dynamic degradation processes of Mg alloys while also elucidating cell behavior and their potential contribution to the degradation of these alloys.
Collapse
Affiliation(s)
- Diana C Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Anke Borkam-Schuster
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Anna Dobkowska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | | | - Tomasz Płociński
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Wojciech Święszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| |
Collapse
|
3
|
Wang X, Wang C, Chu C, Xue F, Li J, Bai J. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications. Bioact Mater 2024; 39:74-105. [PMID: 38783927 PMCID: PMC11112617 DOI: 10.1016/j.bioactmat.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Mg is a typical biodegradable metal widely used for biomedical applications due to its considerable mechanical properties and bioactivity. Biodegradable polymers have attracted great interest owing to their favorable processability and inclusiveness. However, it is challenging for the degradation rates of Mg or polymers to precisely match tissue repair processes, and the significant changes in local pH during degradation hinder tissue repair. The concept of combining Mg with polymers is proposed to overcome the shortcomings of materials, aiming to meet repair needs from various aspects such as mechanics and biology. Therefore, it is essential to systematically understand the behavior of biodegradable Mg/polymer composite (BMPC) from the design, manufacturing, mechanical properties, degradation, and biological effects. In this review, we elaborate on the design concepts and manufacturing strategies of high-strength BMPC, the "structure-function" relationship between the microstructures and mechanical properties of composites, the variation in the degradation rate due to endogenous and exogenous factors, and the establishment of advanced degradation research platform. Additionally, the interplay among composite components during degradation and the biological function of composites under non-responsive/stimuli-responsive platforms are also discussed. Finally, we hope that this review will benefit future clinical applications of "structure-function" integrated biomaterials.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| |
Collapse
|
4
|
Kanniyappan H, Cheng KY, Badhe RV, Neto M, Bijukumar D, Barba M, Pourzal R, Mathew M. Investigation of cell-accelerated corrosion (CAC) on the CoCrMo alloy with segregation banding: Hip implant applications. J Mech Behav Biomed Mater 2024; 152:106449. [PMID: 38387118 DOI: 10.1016/j.jmbbm.2024.106449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Metal alloy microstructure plays a crucial role in corrosion associated with total hip replacement (THR). THR is a prominent strategy that uses metal implants such as cobalt-chromium-molybdenum (CoCrMo) alloys due to their advantageous biological and mechanical properties. Despite all benefits, these implants undergo corrosion and wear processes in-vivo in a synergistic manner called tribocorrosion. Also, the implant retrieval findings reported that fretting corrosion occurred in-vivo, evidenced by the damage patterns that appeared on the THR junction interfaces. There is no scientific data on the studies reporting the fretting corrosion patterns of CoCrMo microstructures in the presence of specific biological treatments to date. In the current study, Flat-on-flat fretting corrosion set-up was customized and used to study the tribocorrosion patterns of fretting corrosion to understand the role of alloy microstructure. Alloy microstructural differences were created with the implant stock metal's longitudinal and transverse cutting orientations. As a result, the transverse created the non-banded, homogenous microstructure, whereas the longitudinal cut resulted in the banded, non-homogenous microstructure on the surface of the alloy (in this manuscript, the terms homogenous and banded were used). The induced currents were monitored using a three-electrode system. Three different types of electrolytes were utilized to study the fretting corrosion patterns with both homogeneous and banded microstructures: 1. Control media 2. Spent media (the macrophage cell cultured media) 3. Challenged media (media collected after the macrophage was treated with CoCrMo particles). From the electrochemical results, in the potentiostat conditions, the banded group exhibited a higher induced current in both challenged and spent electrolyte environments than in control due to the synergistic activity of CoCrMo particles and macrophage demonstrating more corrosion loss. Additionally, both Bode and Nyquist plots reported a clear difference between the banded and homogeneous microstructure, especially with challenged electrolytes becoming more corrosion-resistant post-fretting than pre-fretting results. The banded microstructure showed a unique shape of the fretting loop, which may be due to tribochemical reactions. Therefore, from the electrochemical, mechanical, and surface analysis data results, the transverse/homogenous/non-banded alloy microstructure groups show a higher resistance to fretting-corrosion damage.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA
| | - Kai-Yuan Cheng
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA
| | - Ravindra V Badhe
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA; Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | | | - Divya Bijukumar
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA
| | - Mark Barba
- Dept of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | | | - Mathew Mathew
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA.
| |
Collapse
|
5
|
Kwesiga MP, Gillette AA, Razaviamri F, Plank ME, Canull AL, Alesch Z, He W, Lee BP, Guillory RJ. Biodegradable magnesium materials regulate ROS-RNS balance in pro-inflammatory macrophage environment. Bioact Mater 2023; 23:261-273. [PMID: 36439083 PMCID: PMC9678810 DOI: 10.1016/j.bioactmat.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The relationship between reactive oxygen and nitrogen species (ROS-RNS) secretion and the concomitant biocorrosion of degradable magnesium (Mg) materials is poorly understood. We found that Mg foils implanted short term in vivo (24 h) displayed large amounts of proinflammatory F4/80+/iNOS + macrophages at the interface. We sought to investigate the interplay between biodegrading Mg materials (98.6% Mg, AZ31 & AZ61) and macrophages (RAW 264.7) stimulated with lipopolysaccharide (RAW 264.7LPS) to induce ROS-RNS secretion. To test how these proinflammatory ROS-RNS secreting cells interact with Mg corrosion in vitro, Mg and AZ61 discs were suspended approximately 2 mm above a monolayer of RAW 264.7 cells, either with or without LPS. The surfaces of both materials showed acute (24 h) changes when incubated in the proinflammatory RAW 264.7LPS environment. Mg discs incubated with RAW 264.7LPS macrophages showed greater corrosion pitting, while AZ61 showed morphological and elemental bulk product changes via scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). X-ray photoelectron spectroscopy (XPS) analysis showed a reduction in the Ca/P ratio of the surface products for AZ61 disc incubated with RAW 264.7LPS, but not the Mg discs. Moreover, RAW 264.7LPS macrophages were found to be more viable in the acute biodegradative environment generated by Mg materials, as demonstrated by calcein-AM and cleaved (active) caspase-3 staining (CC3). LPS stimulation caused an increase in ROS-RNS, and a decrease in antioxidant peroxidase activity. Mg and AZ61 were found to change this ROS-RNS balance, independently of physiological antioxidant mechanisms. The findings highlight the complexity of the cellular driven acute inflammatory responses to different biodegradable Mg, and how it can potentially affect performance of these materials.
Collapse
|
6
|
Trang LT, Le HV, Hiromoto S, Minho O, Kobayashi E, Nguyen NV, Cao NQ. In vitrocellular biocompatibility and in vivodegradation behavior of calcium phosphate-coated ZK60 magnesium alloy. Biomed Mater 2023; 18. [PMID: 36827743 DOI: 10.1088/1748-605x/acbf16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Calcium phosphate (Ca-P) surface coating is a simple but effective way to enhance both corrosion resistance and biocompatibility of ZK60 magnesium alloy. However, cell compatibility on different Ca-P layers coated on ZK60 alloy has seldom been investigated. In this study, the effects of type, morphology and corrosion protection of several Ca-P coatings formed at pH 6.5, 7.8 and 10.2 on cell behavior were examined by using an osteoblastic cell line MC3T3-E1. Furthermore,in vivobehavior in rabbits of the alloy coated with the optimum Ca-P layer was also studied. It was found that the surface factors governed the cell morphology and density. The coating morphology plays a dominant role in these surface factors. The sample coated at pH 7.8 showed the best cellular biocompatibility, suggesting that the hydroxyapatite (HAp) layer formed at pH 7.8 was the optimum coating. In rabbits, this optimum coating enhanced remarkably the corrosion resistance of the alloy. During implantation, the outermost crystals of the HAp coating were shortened and thinned due to the dissolution of HAp caused by the body fluid of the rabbits. It is indicated that ZK60 alloy coated at pH 7.8 can be applied as a biodegradable implant.
Collapse
Affiliation(s)
- Le Thi Trang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Hai Van Le
- 103 Military Hospital, Vietnam Military Medical University, 160, Phung Hung, Phuc La, Ha Dong, Hanoi, Vietnam
| | - Sachiko Hiromoto
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - O Minho
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Equo Kobayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Nam Viet Nguyen
- Institute of Traumatology and Orthopedics, 108 Military Central Hospital, 1B Tran Hung Dao, Bach Dang, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Quang Cao
- Laboratory for Biomaterials and Bioengineering, Université Laval, 2325, Quebec G1V 0A6, Canada
| |
Collapse
|
7
|
Wei L, Gao Z. Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review. RSC Adv 2023; 13:8427-8463. [PMID: 36926015 PMCID: PMC10013130 DOI: 10.1039/d2ra07829e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Magnesium alloys have achieved a good balance between biocompatibility and mechanical properties, and have great potential for clinical application, and their performance as implant materials has been continuously improved in recent years. However, a high degradation rate of Mg alloys in a physiological environment remains a major limitation before clinical application. In this review, according to the human body's intake of elements, the current mainstream implanted magnesium alloy system is classified and discussed, and the corrosion mechanism of magnesium alloy in vivo and in vitro is described, including general corrosion, localized corrosion, pitting corrosion, and degradation of body fluid environment impact etc. The introduction of methods to improve the mechanical properties and biocorrosion resistance of magnesium alloys is divided into two parts: the alloying part mainly discusses the strengthening mechanisms of alloying elements, including grain refinement strengthening, solid solution strengthening, dislocation strengthening and precipitation strengthening etc.; the surface modification part introduces the ideas and applications of novel materials with excellent properties such as graphene and biomimetic materials in the development of functional coatings. Finally, the existing problems are summarized, and the future development direction is prospected.
Collapse
Affiliation(s)
- Liangyu Wei
- School of Material Science and Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ziyuan Gao
- Central Research Institute of Building and Construction (CRIBC) Beijing 100088 China +86 18969880147
- State Key Laboratory of Iron and Steel Industry Environmental Protection Beijing 100088 China
| |
Collapse
|
8
|
Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications. MATERIALS 2022; 15:ma15072613. [PMID: 35407944 PMCID: PMC9000648 DOI: 10.3390/ma15072613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Magnesium alloys exhibit superior biocompatibility and biodegradability, which makes them an excellent candidate for artificial implants. However, these materials also suffer from lower corrosion resistance, which limits their clinical applicability. The corrosion mechanism of Mg alloys is complicated since the spontaneous occurrence is determined by means of loss of aspects, e.g., the basic feature of materials and various corrosive environments. As such, this study provides a review of the general degradation/precipitation process multifactorial corrosion behavior and proposes a reasonable method for modeling and preventing corrosion in metals. In addition, the composition design, the structural treatment, and the surface processing technique are involved as potential methods to control the degradation rate and improve the biological properties of Mg alloys. This systematic representation of corrosive mechanisms and the comprehensive discussion of various technologies for applications could lead to improved designs for Mg-based biomedical devices in the future.
Collapse
|
9
|
Unbehau R, Luthringer-Feyerabend BJC, Willumeit-Römer R. The impact of brain cell metabolism and extracellular matrix on magnesium degradation. Acta Biomater 2020; 116:426-437. [PMID: 32890748 DOI: 10.1016/j.actbio.2020.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023]
Abstract
Due to its degradability, magnesium holds potential for the application as a base material for local treatment systems. Particularly for the therapy of severe brain-related diseases, local approaches are advantageous. To confirm the suitability of magnesium as a material for neural implants, information on the interaction of brain cells with magnesium is essential. Initial steps of such an evaluation need to include not only cytocompatibility tests but also the analysis of the in vitro material degradation to predict in vivo material performance. Considering the sensitivity and functional importance of neural tissue, an in-depth understanding of the processes involved is of particular relevance. Here, we investigate the influence of four different brain cell types and fibroblasts on magnesium degradation in direct material contact. Our findings indicate cell type as well as cell density-dependent degradation behavior. Metabolic activity (lactate content) appears to be crucial for degradation promotion. Extracellular matrix composition, distribution, and matrix/cell ratios are analyzed to elucidate the cell-material interactions further. Statement of Significance Thanks to their degradability, magnesium (Mg)-based materials could be promising biomaterials for local ion or even drug delivery strategies for the treatment of severe brain-related diseases. To confirm the suitability of Mg as a neural implant material, information on the interaction of brain cells with Mg is essential. Initial steps of such an evaluation need to include cytocompatibility tests and the analysis of the in vitro material degradation to predict in vivo material performance. The present study provides data on the influence of different brain cell types on Mg degradation in direct material contact. Our findings indicate cell type and cell density-dependent degradation behavior, and elucidate the role of cell metabolites and extracellular matrix molecules in the underlying degradation mechanisms.
Collapse
Affiliation(s)
- Reneé Unbehau
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Bérengère J C Luthringer-Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
10
|
Globig P, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Optimizing an Osteosarcoma-Fibroblast Coculture Model to Study Antitumoral Activity of Magnesium-Based Biomaterials. Int J Mol Sci 2020; 21:E5099. [PMID: 32707715 PMCID: PMC7404313 DOI: 10.3390/ijms21145099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is among the most common cancers in young patients and is responsible for one-tenth of all cancer-related deaths in children. Surgery often leads to bone defects in excised tissue, while residual cancer cells may remain. Degradable magnesium alloys get increasing attention as orthopedic implants, and some studies have reported potential antitumor activity. However, most of the studies do not take the complex interaction between malignant cells and their surrounding stroma into account. Here, we applied a coculture model consisting of green fluorescent osteosarcoma cells and red fluorescent fibroblasts on extruded Mg and Mg-6Ag with a tailored degradation rate. In contrast to non-degrading Ti-based material, both Mg-based materials reduced relative tumor cell numbers. Comparing the influence of the material on a sparse and dense coculture, relative cell numbers were found to be statistically different, thus relevant, while magnesium alloy degradations were observed as cell density-independent. We concluded that the sparse coculture model is a suitable mechanistic system to further study the antitumor effects of Mg-based material.
Collapse
Affiliation(s)
- Philipp Globig
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany; (P.G.); (R.W.-R.)
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany; (P.G.); (R.W.-R.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (E.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (E.M.)
| | - Bérengère J.C. Luthringer-Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany; (P.G.); (R.W.-R.)
| |
Collapse
|
11
|
Jin L, Chen C, Jia G, Li Y, Zhang J, Huang H, Kang B, Yuan G, Zeng H, Chen T. The bioeffects of degradable products derived from a biodegradable Mg-based alloy in macrophages via heterophagy. Acta Biomater 2020; 106:428-438. [PMID: 32044459 DOI: 10.1016/j.actbio.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 01/09/2023]
Abstract
Biodegradable magnesium alloys are promising candidates for use in biomedical applications. However, degradable particles (DPs) derived from Mg-based alloys have been observed in tissue in proximity to sites of implantation, which might result in unexpected effects. Although previous in vitro studies have found that macrophages can take up DPs, little is known about the potential phagocytic pathway and the mechanism that processes DPs in cells. Additionally, it is necessary to estimate the potential bioeffects of DPs on macrophages. Thus, in this study, DPs were generated from a Mg-2.1Nd-0.2Zn-0.5Zr alloy (JDBM) by an electrochemical method, and then macrophages were incubated with the DPs to reveal the potential impact. The results showed that the cell viability of macrophages decreased in a concentration-dependent manner in the presence of DPs due to effects of an apoptotic pathway. However, the DPs were phagocytosed into the cytoplasm of macrophages and further degraded in phagolysosomes, which comprised lysosomes and phagosomes, by heterophagy instead of autophagy. Furthermore, several pro-inflammatory cytokines in macrophages were upregulated by DPs through the induction of reactive oxygen species (ROS) production. To the best of our knowledge, this is the first study to show that DPs derived from a Mg-based alloy are consistently degraded in phagolysosomes after phagocytosis by macrophages via heterophagy, which results in an inflammatory response owing to ROS overproduction. Thus, our research has increased the knowledge of the metabolism of biodegradable Mg metal, which will contribute to an understanding of the health effects of biodegradable magnesium metal implants used for tissue repair. STATEMENT OF SIGNIFICANCE: Biomedical degradable Mg-based alloys have great promise in applied medicine. Although previous studies have found that macrophages can uptake degradable particles (DPs) in vitro and observed in the sites of implantation in vivoin vivo, few studies have been carried out on the potential bioeffects relationship between DPs and macrophages. In this study, we analyzed the bioeffects of DPs derived from a Mg-based alloy on the macrophages. We illustrated that the DPs were size-dependently engulfed by macrophages via heterophagy and further degraded in the phagolysosome rather than autophagosome. Furthermore, DPs were able to induce a slight inflammatory response in macrophages by inducing ROS production. Thus, our research enhances the knowledge of the interaction between DPs of Mg-based alloy and cells, and offers a new perspective regarding the use of biodegradable alloys.
Collapse
|
12
|
Bijukumar DR, Salunkhe S, Morris D, Segu A, Hall DJ, Pourzal R, Mathew MT. In Vitro Evidence for Cell-Accelerated Corrosion Within Modular Junctions of Total Hip Replacements. J Orthop Res 2020; 38:393-404. [PMID: 31436344 PMCID: PMC7370985 DOI: 10.1002/jor.24447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
Corrosion at modular junctions of total hip replacement (THR) remains a major concern today. Multiple types of damage modes have been identified at modular junctions, correlated with different corrosion characteristics that may eventually lead to implant failure. Recently, within the head-taper region of the CoCrMo retrieval implants, cell-like features and trails of etching patterns were observed that could potentially be linked to the involvement of cells of the periprosthetic region. However, there is no experimental evidence to corroborate this phenomenon. Therefore, we aimed to study the potential role of periprosthetic cell types on corrosion of CoCrMo alloy under different culture conditions, including the presence of CoCrMo wear debris. Cells were incubated with and without CoCrMo wear debris (obtained from a hip simulator) with an average particle size of 119 ± 138 nm. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion tendency, corrosion rate, and corrosion kinetics using the media after 24 h of cell culture as the electrolyte. Results of the study showed that there was lower corrosion resistance (p < 0.02) and higher capacitance (p < 0.05) within cell media from macrophages challenged with particles when compared with the other media conditions studied. The potentiodynamic results were also in agreement with the EIS values, showing significantly higher corrosion tendency (low Ecorr ) (p < 0.0001) and high Icorr (p < 0.05) in media from challenged macrophages compared with media with H2 O2 solution. Overall, the study provides in vitro experimental evidence for the possible role of macrophages in altering the chemical environment within the crevice and thereby accelerating corrosion of CoCrMo alloy. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:393-404, 2020.
Collapse
Affiliation(s)
- Divya Rani Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Shruti Salunkhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Dalton Morris
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Abhijith Segu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107
| | - Deborah J. Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Mathew T. Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL, 61107,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
13
|
Jin L, Chen C, Li Y, Yuan F, Gong R, Wu J, Zhang H, Kang B, Yuan G, Zeng H, Chen T. A Biodegradable Mg-Based Alloy Inhibited the Inflammatory Response of THP-1 Cell-Derived Macrophages Through the TRPM7-PI3K-AKT1 Signaling Axis. Front Immunol 2019; 10:2798. [PMID: 31849975 PMCID: PMC6902094 DOI: 10.3389/fimmu.2019.02798] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Mg-based alloys might be ideal biomaterials in clinical applications owing to favorable mechanical properties, biodegradability, biocompatibility, and especially their anti-inflammatory properties. However, the precise signaling mechanism underlying the inhibition of inflammation by Mg-based alloys has not been elucidated. Here, we investigated the effects of a Mg-2.1Nd-0.2Zn-0.5Zr alloy (denoted as JDBM) on lipopolysaccharide (LPS)-induced macrophages. THP-1 cell-derived macrophages were cultured on JDBM, Ti-6Al-4V alloy (Ti), 15% extract of JDBM, and 7.5 mM of MgCl2 for 1 h before the addition of LPS for an indicated time; the experiments included negative and positive controls. Our results showed JDBM, extract, and MgCl2 could decrease LPS-induced tumor necrosis factor (TNF) and interleukin (IL)-6 expression. However, there were no morphologic changes in macrophages on Ti or JDBM. Mechanically, extract and MgCl2 downregulated the expression of toll-like receptor (TLR)-4 and MYD88 compared with the positive control and inhibited LPS-induced nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by inactivation of the phosphorylation of IKK-α/β, IKβ-α, P65, P38, and JNK. Additionally, the LPS-induced reactive oxygen species (ROS) expression was also decreased by extract and MgCl2. Interestingly, the expression of LPS-induced TNF and IL-6 could be recovered by knocking down TRPM7 of macrophages, in the presence of extract or MgCl2. Mechanically, the activities of AKT and AKT1 were increased by extract or MgCl2 with LPS and were blocked by a PI3K inhibitor, whereas siRNA TRPM7 inhibited only AKT1. Together, our results demonstrated the degradation products of Mg-based alloy, especially magnesium, and resolved inflammation by activation of the TRPM7-PI3K-AKT1 signaling pathway, which may be a potential advantage or target to promote biodegradable Mg-based alloy applications.
Collapse
Affiliation(s)
- Liang Jin
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Metal Matrix Composite, National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
- Division of Immunology, Shanghai Children's Medical Center, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxin Chen
- State Key Laboratory of Metal Matrix Composite, National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Yutong Li
- State Key Laboratory of Metal Matrix Composite, National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yuan
- State Key Laboratory of Metal Matrix Composite, National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Ruolan Gong
- Division of Immunology, Shanghai Children's Medical Center, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Division of Immunology, Shanghai Children's Medical Center, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhang
- State Key Laboratory of Metal Matrix Composite, National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Kang
- Department of Orthopaedics, Peking University Shenzhen Hospital of Medicine, Shenzhen, China
| | - Guangyin Yuan
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Metal Matrix Composite, National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Zeng
- Department of Orthopaedics, Peking University Shenzhen Hospital of Medicine, Shenzhen, China
| | - Tongxin Chen
- Division of Immunology, Shanghai Children's Medical Center, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Kang Y, Li L, Li S, Zhou X, Xia K, Liu C, Qu Q. Temporary Inhibition of the Corrosion of AZ31B Magnesium Alloy by Formation of Bacillus subtilis Biofilm in Artificial Seawater. MATERIALS 2019; 12:ma12030523. [PMID: 30744166 PMCID: PMC6384576 DOI: 10.3390/ma12030523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 11/16/2022]
Abstract
It is well known that microorganisms tend to form biofilms on metal surfaces to accelerate/decelerate corrosion and affect their service life. Bacillus subtilis was used to produce a dense biofilm on an AZ31B magnesium alloy surface. Corrosion behavior of the alloy with the B. subtilis biofilm was evaluated in artificial seawater. The results revealed that the biofilm hampered extracellular electron transfer significantly, which resulted in a decrease of icorr and increase of Rt clearly compared to the control group. Moreover, an ennoblement of Ecorr was detected under the condition of B. subtilis biofilm covering. Significant reduction of the corrosion was observed by using the cyclic polarization method. All of these prove that the existence of the B. subtilis biofilm effectively enhances the anti-corrosion performance of the AZ31B magnesium alloy. This result may enhance the usage of bio-interfaces for temporary corrosion control. In addition, a possible corrosion inhibition mechanism of B. subtilis on AZ31B magnesium alloy was proposed.
Collapse
Affiliation(s)
- Yaxin Kang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Shunling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Xin Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Ke Xia
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
15
|
Sato T, Shimizu Y, Odashima K, Sano Y, Yamamoto A, Mukai T, Ikeo N, Takahashi T, Kumamoto H. In vitro and in vivo analysis of the biodegradable behavior of a magnesium alloy for biomedical applications. Dent Mater J 2019; 38:11-21. [PMID: 30158349 DOI: 10.4012/dmj.2017-324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was designed to investigate the biodegradation behavior of Mg alloy plates in the maxillofacial region. For in vitro analysis, the plates were immersed in saline solution and simulated body fluid. For in vivo, the plates were implanted into the tibia, head, back, abdominal cavity, and femur and assessed at 1, 2, and 4 weeks after implantation. After implantation, the plate volumes and the formed insoluble salt were measured via micro-computed tomography. SEM/EDX analysis of the insoluble salt and histological analysis of the surrounding tissues were performed. The volume loss of plates in the in vitro groups was higher than that in the in vivo groups. The volume loss was fastest in the abdomen, followed by the head, back, tibia, and femur. There were no statistically significant differences in the insoluble salt volume of the all implanted sites. The corrosion of the Mg alloy will be affected to the surrounding tissue responses. The material for the plate should be selected based on the characteristic that Mg alloys are decomposed relatively easily in the maxillofacial region.
Collapse
Affiliation(s)
- Takumi Sato
- Division of Oral and Maxillofacial Surgery, Department of Oral and Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Yoshinaka Shimizu
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Kenji Odashima
- Division of Oral and Maxillofacial Surgery, Department of Oral and Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Yuya Sano
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Akiko Yamamoto
- Biometals Group, Biomaterials Unit, Nano-life Field, International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Toshiji Mukai
- Department of Mechanical Engineering, Kobe University
| | - Naoko Ikeo
- Department of Mechanical Engineering, Kobe University
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Department of Oral and Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Hiroyuki Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
16
|
Zhang C, Lin J, Liu H. Magnesium-based Biodegradable Materials for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Jiang W, Cipriano AF, Tian Q, Zhang C, Lopez M, Sallee A, Lin A, Cortez Alcaraz MC, Wu Y, Zheng Y, Liu H. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomater 2018; 72:407-423. [PMID: 29626698 DOI: 10.1016/j.actbio.2018.03.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/10/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) and its alloys have been widely investigated as the most promising biodegradable metals to replace conventional non-degradable metals for temporary medical implant applications. New Mg alloys have been developed for medical applications in recent years; and the concept of alloying Mg with less-toxic elements have aroused tremendous interests due to the promise to address the problems associated with rapid degradation of Mg without compromising its cytocompatibility and biocompatibility. Of particular interests for orthopedic/spinal implant applications are the additions of calcium (Ca) and strontium (Sr) into Mg matrix because of their beneficial properties for bone regeneration. In this study, degradation and cytocompatibility of four binary MgSr alloys (Mg-xSr, x = 0.2, 0.5, 1 and 2 wt%) and four ternary MgCaSr alloys (Mg-1Ca-xSr, x = 0.2, 0.5, 1 and 2 wt%) were investigated and compared via direct culture with bone marrow-derived mesenchymal stem cells (BMSCs). The influence of the alloy composition on the degradation rates were studied and compared. Moreover, the cellular responses to the binary MgSr alloys and the ternary MgCaSr alloys were comparatively evaluated; and the critical factors influencing BMSC behaviors were discussed. This study screened the degradability and in vitro cytocompatibility of the binary MgSr alloys and the ternary MgCaSr alloys. Mg-1Sr, Mg-1Ca-0.5Sr and Mg-1Ca-1Sr alloys are recommended for further in vivo studies toward clinical translation due to their best overall performances in terms of degradation and cytocompatibility among all the alloys studied in the present work. STATEMENT OF SIGNIFICANCE Traditional Mg alloys with slower degradation often contain aluminum or rare earth elements as alloying components, which raised safety and regulatory concerns. To circumvent unsafe elements, nutrient elements such as calcium (Ca) and strontium (Sr) were selected to create Mg-Sr binary alloys and Mg-Ca-Sr ternary alloys to improve the safety and biocompatibility of bioresorbable Mg alloys for medical implant applications. In this study, in vitro degradation and cellular responses to four binary Mg-xSr alloys and four ternary Mg-1Ca-xSr alloys with increasing Sr content (up to 2 wt%) were evaluated in direct culture with bone marrow derived mesenchymal stem cells (BMSCs). The roles of Sr and Ca in tuning the alloy microstructure, degradation behaviors, and BMSC responses were collectively compared in the BMSC direct culture system for the first time. The most promising alloys were identified and recommended for further in vivo studies toward clinical translation.
Collapse
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Aaron F Cipriano
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Qiaomu Tian
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Chaoxing Zhang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Marisa Lopez
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Amy Sallee
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Alan Lin
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | | | - Yuanhao Wu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Huinan Liu
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
18
|
Zhang J, Li H, Wang W, Huang H, Pei J, Qu H, Yuan G, Li Y. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomater 2018; 69:372-384. [PMID: 29369807 DOI: 10.1016/j.actbio.2018.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/18/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Mg-based stent is a promising candidate of the next generation fully degradable vascular stents. The latest progress includes the CE approval of the Magmaris ® WE43 based drug eluting stent. However, so far, the long term (more than 1 year implantation) in vivo degradation and the physiological effects caused by the degradation products were still unclear. In this study, a 20 month observation was carried out after the bare Mg-Nd-Zn-Zr (abbr. JDBM) stent prototype was implanted into the common carotid artery of New Zealand white rabbit in order to evaluate its safety, efficacy and especially degradation behavior. The degradation of the main second phase Mg12Nd was also studied. Results showed that the bare JDBM stent had good safety and efficacy with a complete re-endothelialization within 28 days. The JDBM stent struts were mostly replaced in situ by degradation products in 4 month. The important finding was that the volume and Ca concentration of the degradation products decreased in the long term, eliminating the clinicians' concern of possible vessel calcification. In addition, the alloying elements Mg and Zn in the stent could be safely metabolized as continuous enrichment in any of the main organs were not detected although Nd and Zr showed an abrupt increase in spleen and liver after 1 month implantation. Collectively, the long term in vivo results showed the rapid re-endothelialization of JDBM stent and the long term safety of the degradation products, indicating its great potential as the backbone of the fully degradable vascular stent. STATEMENT OF SIGNIFICANCE Mg-based stent is a promising candidate of the next generation fully degradable stents, especially after the recent market launch of one of its kind (Magmaris). However the fundamental question about the long term degradation and metabolic mechanism of Mg-based stent and its degradation products remain unanswered. We implanted our patented Mg-Nd-Zn-Zr bare stent into the common carotid artery of rabbits and conducted a 20 months observation. We found that the Ca containing degradation products could be further degraded in vivo. All the alloying elements showed no continuous enrichment in the main organs of rabbits. These findings eliminate the clinicians' concern of possible vessel calcification and element enrichment after the implantation of Mg alloy based stents to some extent.
Collapse
Affiliation(s)
- Jian Zhang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haiyan Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyun Qu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongdong Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
19
|
Abstract
Biodegradable Mg-based alloys have shown great potential as bone fixation devices or vascular stents. As implant biomaterials, the foreign body reaction (FBR) is an important issue to be studied, where the inflammatory cells play a key role. Here, we used two inflammatory cell lines i.e. THP-1 cells and THP-1 macrophages, to evaluate the effect of Mg–Nd–Zn–Zr alloy (denoted as JDBM) extracts on cell viability, death modes, cell cycle, phagocytosis, differentiation, migration and inflammatory response. The results showed that high-concentration extract induced necrosis and complete damage of cell function. For middle-concentration extract, cell apoptosis and partially impaired cell function were observed. TNF-α expression of macrophages was up-regulated by co-culture with extract in 20% concentration, but was down-regulated in the same concentration in the presence of LPS stimulation. Interestingly, the production of TNF-α decreased when macrophages were cultured in middle and high concentration extracts independent of LPS. Cell viability was also negatively affected by magnesium ions in JDBM extracts, which was a potential factor affecting cell function. Our results provide new information about the impact of Mg alloy extracts on phenotype of immune cells and the potential mechanism, which should be taken into account prior to clinical applications.
Collapse
|
20
|
Cipriano AF, Sallee A, Guan RG, Lin A, Liu H. A Comparison Study on the Degradation and Cytocompatibility of Mg-4Zn- xSr Alloys in Direct Culture. ACS Biomater Sci Eng 2017; 3:540-550. [PMID: 33429621 DOI: 10.1021/acsbiomaterials.6b00684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article reports the behaviors of bone-marrow-derived mesenchymal stem cells (BMSCs) in the direct culture with four Mg-4Zn-xSr alloys (x = 0.15, 0.5, 1.0, 1.5 wt %), designated as ZSr41A, B, C, and D, respectively; and a systematic comparison on the degradation of the ZSr41 alloys and their biological impact in the direct culture with different cell types in their respective media. The direct culture method, in which cells are seeded directly onto the surface of the sample, was used to investigate cellular responses at the cell-biomaterial interface in vitro. The results showed that BMSCs adhered and remained viable on the surfaces of all ZSr41 alloys, but the faster degrading ZSr41A and ZSr41B alloys showed a significantly lower amount of viable BMSCs adhered to their surfaces. Moreover, BMSCs adhered to the culture plate surrounding the samples were unaffected by the solubilized degradation products from the ZSr41 alloys. The results from the comparison study showed that the in vitro degradation rates of Mg-based biomaterials in different culture systems might be mostly affected by media buffer capacity (i.e., HCO3- concentration), and to a lesser extent, d-glucose concentration. The comparison study also indicated that BMSCs were more robust than H9 human embryonic stem cells and human umbilical vein endothelial cells for screening the cytocompatibility of Mg-based biomaterials. In general, the adhesion and viability of BMSCs at the cell-material interface were inversely proportional to the alloy degradation rates. This study presented a clinically relevant in vitro culture system for screening bioresorbable alloys in direct culture, and provided valuable guidelines for determining the degradation rates of Mg-based biomaterials.
Collapse
Affiliation(s)
| | | | - Ren-Guo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | | | | |
Collapse
|