1
|
Cao X, He W, Rong K, Xu S, Chen Z, Liang Y, Han S, Zhou Y, Yang X, Ma H, Qin A, Zhao J. DZNep promotes mouse bone defect healing via enhancing both osteogenesis and osteoclastogenesis. Stem Cell Res Ther 2021; 12:605. [PMID: 34930462 PMCID: PMC8686256 DOI: 10.1186/s13287-021-02670-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Enhancer of zeste homolog 2 (EZH2) is a novel oncogene that can specifically trimethylate the histone H3 lysine 27 (H3K27me3) to transcriptionally inhibit the expression of downstream tumor-suppressing genes. As a small molecular inhibitor of EZH2, 3-Deazaneplanocin (DZNep) has been widely studied due to the role of tumor suppression. With the roles of epigenetic regulation of bone cells emerged in past decades, the property and molecular mechanism of DZNep on enhancing osteogenesis had been reported and attracted a great deal of attention recently. This study aims to elucidate the role of DZNep on EZH2-H3K27me3 axis and downstream factors during both osteoclasts and osteoblasts formation and the therapeutic possibility of DZNep on bone defect healing. Methods Bone marrow-derived macrophages (BMMs) cells were cultured, and their responsiveness to DZNep was evaluated by cell counting kit-8, TRAP staining assay, bone resorption assay, podosome actin belt. Bone marrow-derived mesenchymal stem cells (BMSC) were cultured and their responsiveness to DZNep was evaluated by cell counting kit-8, ALP and AR staining assay. The expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), Wnt signaling pathway was determined by qPCR and western blotting. Mouse bone defect models were created, rescued by DZNep injection, and the effectiveness was evaluated by X-ray and micro-CT and histological staining. Results Consistent with the previous study that DZNep enhances osteogenesis via Wnt family member 1(Wnt1), Wnt6, and Wnt10a, our results showed that DZNep also promotes osteoblasts differentiation and mineralization through the EZH2-H3K27me3-Wnt4 axis. Furthermore, we identified that DZNep promoted the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation via facilitating the phosphorylation of IKKα/β, IκB, and subsequently NF-κB nuclear translocation, which credit to the EZH2-H3K27me3-Foxc1 axis. More importantly, the enhanced osteogenesis and osteoclastogenesis result in accelerated mice bone defect healing in vivo. Conclusion DZNep targeting EZH2-H3K27me3 axis facilitated the healing of mice bone defect via simultaneously enhancing osteoclastic bone resorption and promoting osteoblastic bone formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02670-6.
Collapse
Affiliation(s)
- Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Shenggui Xu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, Fujian Province, People's Republic of China
| | - Zhiqian Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Shuai Han
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Collaborative Innovation Center for Biomedicine, GuangxiASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yifan Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hui Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
2
|
Shiu ST, Lee WF, Chen SM, Hao LT, Hung YT, Lai PC, Feng SW. Effect of Different Bone Grafting Materials and Mesenchymal Stem Cells on Bone Regeneration: A Micro-Computed Tomography and Histomorphometric Study in a Rabbit Calvarial Defect Model. Int J Mol Sci 2021; 22:ijms22158101. [PMID: 34360864 PMCID: PMC8347101 DOI: 10.3390/ijms22158101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the new bone formation potential of micro-macro biphasic calcium phosphate (MBCP) and Bio-Oss grafting materials with and without dental pulp-derived mesenchymal stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in a rabbit calvarial bone defect model. The surface structure of the grafting materials was evaluated using a scanning electron microscope (SEM). The multipotent differentiation characteristics of the DPSCs and BMSCs were assessed. Four circular bone defects were created in the calvarium of 24 rabbits and randomly allocated to eight experimental groups: empty control, MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous bone. A three-dimensional analysis of the new bone formation was performed using micro-computed tomography (micro-CT) and a histological study after 2, 4, and 8 weeks of healing. Homogenously porous structures were observed in both grafting materials. The BMSCs revealed higher osteogenic differentiation capacities, whereas the DPSCs exhibited higher colony-forming units. The micro-CT and histological analysis findings for the new bone formation were consistent. In general, the empty control showed the lowest bone regeneration capacity throughout the experimental period. By contrast, the percentage of new bone formation was the highest in the autogenous bone group after 2 (39.4% ± 4.7%) and 4 weeks (49.7% ± 1.5%) of healing (p < 0.05). MBCP and Bio-Oss could provide osteoconductive support and prevent the collapse of the defect space for new bone formation. In addition, more osteoblastic cells lining the surface of the newly formed bone and bone grafting materials were observed after incorporating the DPSCs and BMSCs. After 8 weeks of healing, the autogenous bone group (54.9% ± 6.1%) showed a higher percentage of new bone formation than the empty control (35.3% ± 0.5%), MBCP (38.3% ± 6.0%), MBCP+DPSC (39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-Oss+DPSC (42.1% ± 2.7%) groups. Nevertheless, the percentage of new bone formation did not significantly differ between the MBCP+BMSC (47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups and the autogenous bone group. Our study results demonstrated that autogenous bone is the gold standard. Both the DPSCs and BMSCs enhanced the osteoconductive capacities of MBCP and Bio-Oss. In addition, the efficiency of the BMSCs combined with MBCP and Bio-Oss was comparable to that of the autogenous bone after 8 weeks of healing. These findings provide effective strategies for the improvement of biomaterials and MSC-based bone tissue regeneration.
Collapse
Affiliation(s)
- Shiau-Ting Shiu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sheng-Min Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
| | - Liu-Ting Hao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
| | - Yuan-Ting Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
| | - Pin-Chuang Lai
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY 40202, USA;
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
- Department of Dentistry, Division of Prosthodontics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 5107); Fax: +886-2-27362295
| |
Collapse
|
3
|
Sato T, Semura K, Fujimoto I. Micro‑dimpled surface atelocollagen maintains primary human hepatocytes in culture and may promote their functionality compared with collagen coat culture. Int J Mol Med 2019; 44:960-972. [PMID: 31257473 PMCID: PMC6657980 DOI: 10.3892/ijmm.2019.4251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
Primary human hepatocytes (PHHs) are the gold standard for drug development procedures; however, maintaining functional PHHs in vitro is challenging in conventional collagen-coated cultures. In the present study, we developed a new scaffold comprising high amounts (≥1 mg/cm2) of atelocollagen exposed to ultraviolet radiation to induce cross-linking and improve stability. Scanning and transmission electron microscopy revealed a micro-dimpled surface (MDS) scaffold composed of randomly arranged atelocollagen fibrils. The scaffold was therefore designated as MDS atelocollagen. PHHs cultured on MDS atelocollagen were round with a compact cytoplasm and exhibited enhanced levels of albumin (ALB) secretion and cytochrome P450 (CYP) 3A4 activity. The expression of hepatocyte-related genes, such as serum proteins, drug metabolism-related CYPs, and nuclear receptors, was enhanced in cells cultured on MDS atelocollagen, but not in those cultured on conventional atelocollagen. Moreover, the abnormal gene expression of cell adhesion molecules observed in conventional atelocollagen culture was suppressed when the cells were grown on MDS atelocollagen, thereby suggesting a cell behavior similar to that of in vivo hepatocytes. These results suggest that MDS atelocollagen functionally preserves PHHs while conserving the simplicity of conventional PHH atelocollagen-coated cultures.
Collapse
Affiliation(s)
- Tetsuro Sato
- Koken Research Center, Koken Co., Ltd., Tokyo 115‑0051, Japan
| | - Kayoko Semura
- Koken Research Center, Koken Co., Ltd., Tokyo 115‑0051, Japan
| | - Ichiro Fujimoto
- Koken Research Center, Koken Co., Ltd., Tokyo 115‑0051, Japan
| |
Collapse
|
4
|
Ku JK, Hong I, Lee BK, Yun PY, Lee JK. Dental alloplastic bone substitutes currently available in Korea. J Korean Assoc Oral Maxillofac Surg 2019; 45:51-67. [PMID: 31106133 PMCID: PMC6502751 DOI: 10.5125/jkaoms.2019.45.2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
As dental implant surgery and bone grafts were widely operated in Korean dentist, many bone substitutes are commercially available, currently. For commercially used in Korea, all bone substitutes are firstly evaluated by the Ministry of Health and Welfare (MOHW) for safety and efficacy of the product. After being priced, classified, and registration by the Health Insurance Review and Assessment Service (HIRA), the post-application management is obligatory for the manufacturer (or representative importer) to receive a certificate of Good Manufacturing Practice by Ministry of Food and Drug Safety. Currently, bone substitutes are broadly classified into C group (bone union and fracture fixation), T group (human tissue), L group (general and dental material) and non-insurance material group in MOHW notification No. 2018-248. Among them, bone substitutes classified as dental materials (L7) are divided as xenograft and alloplastic bone graft. The purpose of this paper is to analyze alloplastic bone substitutes of 37 products in MOHW notification No. 2018-248 and to evaluate the reference level based on the ISI Web of Knowledge, PubMed, EMBASE (1980–2019), Cochrane Database, and Google Scholar using the criteria of registered or trademarked product name.
Collapse
Affiliation(s)
- Jeong-Kui Ku
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Inseok Hong
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju, Korea
| | - Bu-Kyu Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, Seoul, Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Jeong Keun Lee
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
He F, Lu T, Fang X, Qiu C, Tian Y, Li Y, Zuo F, Ye J. Study on Mg xSr 3-x(PO 4) 2 bioceramics as potential bone grafts. Colloids Surf B Biointerfaces 2018; 175:158-165. [PMID: 30530001 DOI: 10.1016/j.colsurfb.2018.11.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
Magnesium (Mg) and strontium (Sr), which are essential nutrient elements in the natural bone, positively affect the osteogenic activity even in wide ranges of ion concentrations. However, it remains unknown whether magnesium-strontium phosphates [MgxSr3-x(PO4)2] are potential bone grafts for accelerating bone regeneration. Herein, a serial of MgxSr3-x(PO4)2, including Mg3(PO4)2, Mg2Sr(PO4)2, Mg1.5Sr1.5(PO4)2, MgSr2(PO4)2 and Sr3(PO4)2, were synthesized using a solid-state reaction approach. The physicochemical properties and cell behaviors of MgxSr3-x(PO4)2 bioceramics were characterized and compared with the common bone graft β-tricalcium phosphate (β-TCP). The results indicated that various MgxSr3-x(PO4)2 bioceramics differed in compressive strength and in vitro degradation rate. All the MgxSr3-x(PO4)2 bioceramics had excellent biocompatibility. In contrast to β-TCP, the MgxSr3-x(PO4)2 enhanced alkaline phosphatase activity of mouse bone mesenchymal stem cells (mBMSCs), and inhibited osteoclastogenesis-related gene expression of RAW264.7 cells, but did not enhance osteogenesis-related gene expression of mBMSCs which were treated with osteogenesis induction supplements. However, Mg3(PO4)2 stimulated osteogenesis-related gene expression of mBMSCs without the treatment of osteogenesis induction supplements. This work contributes to the design of bone graft and may open a new avenue for the bone regeneration field.
Collapse
Affiliation(s)
- Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xibo Fang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Chao Qiu
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Ye Tian
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yanhui Li
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fei Zuo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
6
|
Tailoring the mechanical property and cell-biological response of β-tricalcium phosphate composite bioceramics by SrO-P 2O 5-Na 2O based additive. J Mech Behav Biomed Mater 2018; 86:215-223. [PMID: 29986296 DOI: 10.1016/j.jmbbm.2018.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Abstract
β-tricalcium phosphate (β-TCP) bioceramic, which is a prevalent bone graft, is deficient in mechanical strength and mediating the biological functions. In the present study, β-tricalcium phosphate composite bioceramics (TCP/SPNs) were prepared by introducing SrO-P2O5-Na2O based (SPN) sintering additive. With increasing mole ratio of SrO to P2O5, the SPN tended to crystallize. In the liquid-phase sintering process, β-TCP reacted with SPN, producing new compounds. The difference in characteristic of SPN additive affected the compressive strength and cell-biological response of the fabricated TCP/SPNs. By selecting SPN with appropriate formulation, the TCP/SPNs not only could more than double their compressive strength, but also improved the cell viability, promoted osteogenic differentiation and inhibited osteoclastic activities. Taken together, this work establishes a beneficial strategy to improve the overall performance of calcium phosphate bioceramic for application in bone regeneration.
Collapse
|
7
|
Lee JC, Volpicelli EJ. Bioinspired Collagen Scaffolds in Cranial Bone Regeneration: From Bedside to Bench. Adv Healthc Mater 2017; 6:10.1002/adhm.201700232. [PMID: 28585295 PMCID: PMC5831258 DOI: 10.1002/adhm.201700232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Indexed: 12/24/2022]
Abstract
Calvarial defects are common reconstructive dilemmas secondary to a variety of etiologies including traumatic brain injury, cerebrovascular disease, oncologic resection, and congenital anomalies. Reconstruction of the calvarium is generally undertaken for the purposes of cerebral protection, contour restoration for psychosocial well-being, and normalization of neurological dysfunction frequently found in patients with massive cranial defects. Current methods for reconstruction using autologous grafts, allogeneic grafts, or alloplastic materials have significant drawbacks that are unique to each material. The combination of wide medical relevance and the need for a better clinical solution render defects of the cranial skeleton an ideal target for development of regenerative strategies focused on calvarial bone. With the improved understanding of the instructive properties of tissue-specific extracellular matrices and the advent of precise nanoscale modulation in materials science, strategies in regenerative medicine have shifted in paradigm. Previously considered to be simple carriers of stem cells and growth factors, increasing evidence exists for differential materials directing lineage specific differentiation of progenitor cells and tissue regeneration. In this work, we review the clinical challenges for calvarial reconstruction, the anatomy and physiology of bone, and extracellular matrix-inspired, collagen-based materials that have been tested for in vivo cranial defect healing.
Collapse
Affiliation(s)
- Justine C Lee
- Greater Los Angeles Veterans Affairs Research Service, Los Angeles, California
- University of California Los Angeles Division of Plastic and Reconstructive Surgery, Los Angeles, California
| | - Elizabeth J Volpicelli
- Greater Los Angeles Veterans Affairs Research Service, Los Angeles, California
- University of California Los Angeles Division of Plastic and Reconstructive Surgery, Los Angeles, California
| |
Collapse
|