1
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
2
|
Yasunaga Y, Aso Y, Yamada K, Okahisa Y. Preparation of transparent fibroin nanofibril-reinforced chitosan films with high toughness and thermal resistance. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
3
|
Singh AK, Pramanik K. Fabrication and investigation of physicochemical and biological properties of
3D
printed sodium alginate‐chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| | - Krishna Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
4
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
5
|
Zhang S, Zhao G, Ma W, Song Y, Huang C, Xie C, Chen K, Li X. The root-like chitosan nanofiber porous scaffold cross-linked by genipin with type I collagen and its osteoblast compatibility. Carbohydr Polym 2022; 285:119255. [DOI: 10.1016/j.carbpol.2022.119255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
|
6
|
Sulaiman SB, Abdul Rani RB, Mohamad Yahaya NHB, Tabata Y, Hiraoka Y, Seet WT, Ng MH. Physical and natural cross-linking approaches on 3D gelatin microspheres for cartilage regeneration. Tissue Eng Part C Methods 2022; 28:557-569. [PMID: 35615885 DOI: 10.1089/ten.tec.2022.0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of gelatin microspheres (GM) as a cell carrier has been extensively researched. One of its limitation is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of cross-linking agents to circumvent the constraint. Thus, the current study examines two different methods of cross-linking and their effect on the microsphere's '"physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical [Dehydrothermal (DHT)] and natural (Genipin) cross-linking of the 3D gelatin microspheres (GM). We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in isotonic solution, at 37 °C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the cross-linking treatments. The cross-linked GM" 'demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells (BMSCs). Additionally, the cross-linked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that cross-linked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared to non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for cross-linking the GM in order to promote better cartilage tissue regeneration.
Collapse
Affiliation(s)
- Shamsul Bin Sulaiman
- Universiti Kebangsaan Malaysia, 61775, Centre for Tissue Engineering and Regenerative Medicine (CTERM), Bangi, Selangor, Malaysia;
| | - Rizal Bin Abdul Rani
- Universiti Kebangsaan Malaysia, 61775, Orthopedic & Traumatology, Bangi, Selangor, Malaysia;
| | | | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Dept of Biomaterials, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, Kyoto, Japan, 6068507;
| | | | - Wan Tai Seet
- UKM, 61775, Centre for Tissue Engineering and Regenerative Medicine, 12th Floor, Clinical Block, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia, 56000;
| | - Min Hwei Ng
- Universiti Kebangsaan Malaysia, 61775, Tissue Engineering Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Federal Territory, Malaysia, 56000.,Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, 12th Floor, Clinical Block, Jalan Yaacob Latif, Malaysia;
| |
Collapse
|
7
|
Tu P, Pan Y, Wu C, Yang G, Zhou X, Sun J, Wang L, Liu M, Wang Z, Liang Z, Guo Y, Ma Y. Cartilage Repair Using Clematis Triterpenoid Saponin Delivery Microcarrier, Cultured in a Microgravity Bioreactor Prior to Application in Rabbit Model. ACS Biomater Sci Eng 2022; 8:753-764. [PMID: 35084832 DOI: 10.1021/acsbiomaterials.1c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cartilage tissue engineering provides a promising method for the repair of articular cartilage defects, requiring appropriate biological scaffolds and necessary growth factors to enhance the efficiency of cartilage regeneration. Here, a silk fibroin (SF) microcarrier and a clematis triterpenoid saponin delivery SF (CTS-SF) microcarrier were prepared by the high-voltage electrostatic differentiation and lyophilization method, and chondrocytes were carried under the simulated microgravity condition by a rotating cell culture system. SF and CTS-SF microspheres were relatively uniform in size and had a porous structure with good swelling and cytocompatibility. Further, CTS-SF microcarriers could sustainably release CTSs in the monitored 10 days. Compared with the monolayer culture, chondrocytes under the microgravity condition maintained a better chondrogenic phenotype and showed better proliferation ability after culture on microcarriers. Moreover, the sustained release of CTS from CTS-SF microcarriers upregulated transforming growth factor-β, Smad2, and Smad3 signals, contributing to promote chondrogenesis. Hence, the biophysical effects of microgravity and bioactivities of CTS-ST were used for chondrocyte expansion and phenotype maintenance in vitro. With prolonged expansion, SF- and CTS-SF-based microcarrier-cell composites were directly implanted in vivo to repair rabbit articular defects. Gross evaluations, histopathological examinations, and biochemical analysis indicated that SF- and CTS-SF-based composites exhibited cartilage-like tissue repair compared with the nontreated group. Further, CTS-SF-based composites displayed superior hyaline cartilage-like repair that integrated with the surrounding cartilage better and higher cartilage extracellular matrix content. In conclusion, these results provide an alternative preparation method for drug-delivered SF microcarrier and a culture method for maintaining the chondrogenic phenotype of seed cells based on the microgravity environment. CTS showed its bioactive function, and the application of CTS-SF microcarriers can help repair and regenerate cartilage defects.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nursing Institute of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Guanglu Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xin Zhou
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jie Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhifang Wang
- Zhangjiagang Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215600, P.R. China
| | - Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
8
|
Yap JX, Leo CP, Mohd Yasin NH, Show PL, Chu DT, Singh V, Derek CJC. Recent advances of natural biopolymeric culture scaffold: synthesis and modification. Bioengineered 2022; 13:2226-2247. [PMID: 35030968 PMCID: PMC8974151 DOI: 10.1080/21655979.2021.2024322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Traditionally existing 2D culture scaffold has been inappropriately validated due to the failure in generating the precise therapeutic response. Therefore, this leads to the fabrication of 3D culture scaffold resolving the limitations in the in vivo environment. In recent years, tissue engineering played an important role in the field of bio-medical engineering. Biopolymer material, a novel natural material with excellent properties of nontoxic and biodegradable merits can be served as culture scaffold. This review summarizes the modifications of natural biopolymeric culture scaffold with different crosslinkers and their application. In addition, this review provides the recent progress of natural biopolymeric culture scaffold mainly focusing on their properties, synthesizing and modification and application.
Collapse
Affiliation(s)
- Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
9
|
Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112662. [DOI: 10.1016/j.msec.2022.112662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
|
10
|
Wang B, Liu W, Li JJ, Chai S, Xing D, Yu H, Zhang Y, Yan W, Xu Z, Zhao B, Du Y, Jiang Q. A low dose cell therapy system for treating osteoarthritis: In vivo study and in vitro mechanistic investigations. Bioact Mater 2022; 7:478-490. [PMID: 34466747 PMCID: PMC8379370 DOI: 10.1016/j.bioactmat.2021.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be effective in alleviating the progression of osteoarthritis (OA). However, low MSC retention and survival at the injection site frequently require high doses of cells and/or repeated injections, which are not economically viable and create additional risks of complications. In this study, we produced MSC-laden microcarriers in spinner flask culture as cell delivery vehicles. These microcarriers containing a low initial dose of MSCs administered through a single injection in a rat anterior cruciate ligament (ACL) transection model of OA achieved similar reparative effects as repeated high doses of MSCs, as evaluated through imaging and histological analyses. Mechanistic investigations were conducted using a co-culture model involving human primary chondrocytes grown in monolayer, together with MSCs grown either within 3D constructs or as a monolayer. Co-culture supernatants subjected to secretome analysis showed significant decrease of inflammatory factors in the 3D group. RNA-seq of co-cultured MSCs and chondrocytes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed processes relating to early chondrogenesis and increased extracellular matrix interactions in MSCs of the 3D group, as well as phenotypic maintenance in the co-cultured chondrocytes. The cell delivery platform we investigated may be effective in reducing the cell dose and injection frequency required for therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Senlin Chai
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjin Yan
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Bin Zhao
- Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| |
Collapse
|
11
|
Carvalho DN, Reis RL, Silva TH. Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomater Sci 2021; 9:6718-6736. [PMID: 34494053 DOI: 10.1039/d1bm00809a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Wu R, Li H, Yang Y, Zheng Q, Li S, Chen Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2021; 4:6630-6646. [PMID: 35006966 DOI: 10.1021/acsabm.1c00654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Musculoskeletal engineering has been considered as a promising approach to customize regenerated tissue (such as bone, cartilage, tendon, and ligament) via a self-healing performance. Recent advances have demonstrated the great potential of bioactive materials for regenerative medicine. Silk fibroin (SF), a natural polymer, is regarded as a remarkable bioactive material for musculoskeletal engineering thanks to its biocompatibility, biodegradability, and tunability. To improve tissue-engineering performance, silk fibroin is hybridized with other biomaterials to form silk-fibroin-based hybrid biomaterials, which achieve superior mechanical and biological performance. Herein, we summarize the recent development of silk-based hybrid biomaterials in musculoskeletal tissue with reasonable generalization and classification, mainly including silk fibroin-based inorganic and organic hybrid biomaterials. The applied inorganics are composed of calcium phosphate, graphene oxide, titanium dioxide, silica, and bioactive glass, while the polymers include polycaprolactone, collagen (or gelatin), chitosan, cellulose, and alginate. This article mainly focuses on the physical and biological performances both in vitro and in vivo study of several common silk-based hybrid biomaterials in musculoskeletal engineering. The timely summary and highlight of silk-fibroin-based hybrid biomaterials will provide a research perspective to promote the further improvement and development of silk fibroin hybrid biomaterials for improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Shantou University Medical College, Shantou, 515000, PR China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Shantou University Medical College, Shantou, 515000, PR China
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, PR China
| |
Collapse
|
13
|
Fouzi M, Thimma M, BinSabt M, Husain AA, Aouabdi S. Stem cell growth and proliferation on RGD bio-conjugated cotton fibers. Biomed Mater Eng 2021; 32:39-52. [PMID: 33164919 DOI: 10.3233/bme-201115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Merging stem cells with biomimetic materials represent an attractive approach to tissue engineering. The development of an alternative scaffold with the ability to mimic the extracellular matrix, and the 3D gradient preventing any alteration in cell metabolism or in their gene expression patterns, would have many medical applications. OBJECTIVE In this study, we introduced the use of RGD (Arg-Gly-Asp) bio-conjugated cotton to promote the growth and proliferation of mesenchymal stem cells (MSCs). METHODS We measured the expression of stem cell markers and adhesion markers with Q-PCR and analyzed the transcriptomic. The results obtained showed that the MSCs, when cultured with bio-conjugated cotton fibers, form aggregates around the fibers while proliferating. The seeded MSCs with cotton fibers proliferated in a similar fashion to the cells seeded on the monolayer (population doubling level 1.88 and 2.19 respectively). RESULTS The whole genome sequencing of cells adhering to these cotton fibers and cells adhering to the cell culture dish showed differently expressed genes and pathways in both populations. However, the expression of the stem cell markers (Oct4, cKit, CD105) and cell adhesion markers (CD29, HSPG2 and CD138), when examined with quantitative RT-PCR, was maintained in both cell populations. CONCLUSION These results clearly show the ability of the cotton fibers to promote MSCs growth and proliferation in a 3D structure mimicking the in vivo environment without losing their stem cell phenotype.
Collapse
Affiliation(s)
| | - Manjula Thimma
- Environmental Epigenetics Lab, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | | | - Ali A Husain
- Department of Chemistry, Kuwait University, Kuwait
| | - Sihem Aouabdi
- King Saud Bin Abdualziz Univeristy, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
3D Culture of MSCs on a Gelatin Microsphere in a Dynamic Culture System Enhances Chondrogenesis. Int J Mol Sci 2020; 21:ijms21082688. [PMID: 32294921 PMCID: PMC7215541 DOI: 10.3390/ijms21082688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advancement in cartilage tissue engineering has explored the potential of 3D culture to mimic the in vivo environment of human cartilaginous tissue. Three-dimensional culture using microspheres was described to play a role in driving the differentiation of mesenchymal stem cells to chondrocyte lineage. However, factors such as mechanical agitation on cell chondrogenesis during culture on the microspheres has yet to be elucidated. In this study, we compared the 2D and 3D culture of bone-marrow-derived mesenchymal stem cells (BMSCs) on gelatin microspheres (GMs) in terms of MSC stemness properties, immune-phenotype, multilineage differentiation properties, and proliferation rate. Then, to study the effect of mechanical agitation on chondrogenic differentiation in 3D culture, we cultured BMSCs on GM (BMSCs-GM) in either static or dynamic bioreactor system with two different mediums, i.e., F12: DMEM (1:1) + 10% FBS (FD) and chondrogenic induction medium (CIM). Our results show that BMSCs attached to the GM surface and remained viable in 3D culture. BMSCs-GM proliferated faster and displayed higher stemness properties than BMSCs on a tissue culture plate (BMSCs-TCP). GMs also enhanced the efficiency of in-vitro chondrogenesis of BMSCs, especially in a dynamic culture with higher cell proliferation, RNA expression, and protein expression compared to that in a static culture. To conclude, our results indicate that the 3D culture of BMSCs on gelatin microsphere was superior to 2D culture on a standard tissue culture plate. Furthermore, culturing BMSCs on GM in dynamic culture conditions enhanced their chondrogenic differentiation.
Collapse
|
15
|
Wang F, Pang Y, Chen G, Wang W, Chen Z. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydr Polym 2020; 229:115529. [DOI: 10.1016/j.carbpol.2019.115529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
|
16
|
Liu X, Song S, Huang J, Fu H, Ning X, He Y, Zhang Z. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. J Mater Chem B 2020; 8:6115-6127. [DOI: 10.1039/d0tb00616e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels have been developed to provide a multifunctional biomimetic microenvironment for hMSC chondrogenesis.
Collapse
Affiliation(s)
- Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Shaoshuai Song
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province
- College of Mechanical Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
17
|
Agrawal P, Pramanik K. Enhanced chondrogenic differentiation of human mesenchymal stem cells in silk fibroin/chitosan/glycosaminoglycan scaffolds under dynamic culture condition. Differentiation 2019; 110:36-48. [PMID: 31606527 DOI: 10.1016/j.diff.2019.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
Abstract
Cartilage tissue damage and diseases are the most common clinical situation that occurs because of aging and injury, thereby causing pain and loss of mobility. The inability of cartilage tissue to self-repair is instrumental in developing tissue engineered substitutes. To this effect, the present study aims to engineer cartilage construct by culturing umbilical cord blood-derived human mesenchymal stem cells (hMSCs) on novel 3D porous scaffolds developed from natural biopolymers, silk fibroin (SF) and chitosan (CS), with addition of cartilage matrix components, glucosamine (Gl) and chondroitin sulfate (Ch). The presence of Gl and Ch is expected to enhance cartilage regeneration. The developed SF/CS-Gl-Ch scaffolds possess desired pore size in the range 56.55-168.15 μm, 88-92% porosity, 44.7-46.8̊ contact angle, controlled swelling and biodegradability. Upon culturing under dynamic condition in a spinner flask bioreactor, the scaffold supported hMSCs attachment, proliferation, and further promoted chondrogenic differentiation. Cartilage-specific matrix and gene (Collagen II, Sox9 and aggrecan) expression analyses by histology, immunophenotype, immunofluorescence and quantitative PCR studies showed superiority of cell-scaffold construct generated in dynamic culture towards cartilage tissue generation as compared to cell aggregates formed by pellet culture. This study demonstrates the potentiality of SF/CS-Gl-Ch porous scaffold for the development of tissue construct for cartilage regeneration under dynamic culture condition.
Collapse
Affiliation(s)
- Parinita Agrawal
- Centre of Excellence in Tissue engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Krishna Pramanik
- Centre of Excellence in Tissue engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
18
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
19
|
Marques CR, Marote A, Mendes-Pinheiro B, Teixeira FG, Salgado AJ. Cell secretome based approaches in Parkinson’s disease regenerative medicine. Expert Opin Biol Ther 2018; 18:1235-1245. [DOI: 10.1080/14712598.2018.1546840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cláudia R. Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Chen P, Aso T, Sasaki R, Ashida M, Tsutsumi Y, Doi H, Hanawa T. Adhesion and differentiation behaviors of mesenchymal stem cells on titanium with micrometer and nanometer-scale grid patterns produced by femtosecond laser irradiation. J Biomed Mater Res A 2018; 106:2735-2743. [PMID: 30055042 DOI: 10.1002/jbm.a.36503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
To clarify the effects of grid topographies with different scales on cell morphology and functionalization, we investigated the adhesion and differentiation of human mesenchymal stem cells (hMSCs) to titanium surfaces with micron, nano, and micron/nano (hybrid) grid topographies created by femtosecond laser irradiation. The results showed that cellular adhesion and differentiation strongly depended on the scales of the grid topography. hMSCs cultured on micron and hybrid grid topographies showed regulation of cellular adhesion plaques following the surface topography and were vinculin-positive, whereas filamentous vinculin was evident at the filopodia of hMSCs cultured on nanogrids. The findings indicate that the micron grid topography was beneficial for cell colonization by anchoring the cells to the substrate surface, whereas the nanogrid topography was beneficial for cell locomotion. With the superposition effect of the micron and nanogrids, micro/nanohybrid grid topography strongly promoted cell adhesion. This differential adhesion induced differences cell differentiation. Nanogrids promoted differentiation of hMSCs, particularly osteogenic differentiation. These findings provide a basis for the design of novel biomaterial surfaces that can regulate specific cellular functions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2735-2743, 2018.
Collapse
Affiliation(s)
- Peng Chen
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Toshihiro Aso
- Aisin Seiki Co., Ltd., Kariya, Aichi, 448-8650, Japan
| | | | - Maki Ashida
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Yusuke Tsutsumi
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan.,Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hisashi Doi
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Takao Hanawa
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| |
Collapse
|
21
|
Agrawal P, Pramanik K, Biswas A. Chondrogenic differentiation of mesenchymal stem cells on silk fibroin:chitosan–glucosamine scaffold in dynamic culture. Regen Med 2018; 13:545-558. [DOI: 10.2217/rme-2017-0159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aim: Cartilage damage is a common age-related problem that leads to progressive proteoglycan loss. Glucosamine stimulates proteoglycan synthesis and, therefore, its effect on the cartilage extracellular matrix synthesis over silk fibroin:chitosan (SF:CS) tissue-engineered scaffold was investigated for cartilage construct generation. Materials & methods: Human mesenchymal stem cells (hMSCs) were cultured and differentiated over SF:CS–glucosamine porous scaffold, under dynamic culture condition in spinner flask bioreactor. Results: hMSCs-seeded scaffold in dynamic culture exhibited homogenous cell distribution, proliferation and higher cell density at the core than static culture. Glucosamine in scaffold promoted proteoglycan and collagenous matrix synthesis as revealed by histological and immunofluorescence studies. Quantitative-PCR analysis showed upregulation of cartilage-specific genes, thereby confirming the chondrogenic differentiation. Conclusion: The chondrogenic differentiation of hMSCs was enhanced by the synergistic effect of glucosamine incorporated in SF:CS scaffold and influence of 3D dynamic culture environment, thereby resulting in chondrogenic phenotype of the cells that promoted cartilage regeneration.
Collapse
Affiliation(s)
- Parinita Agrawal
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Krishna Pramanik
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Biswas
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
22
|
Levin A, Sharma V, Hook L, García-Gareta E. The importance of factorial design in tissue engineering and biomaterials science: Optimisation of cell seeding efficiency on dermal scaffolds as a case study. J Tissue Eng 2018; 9:2041731418781696. [PMID: 30034769 PMCID: PMC6048616 DOI: 10.1177/2041731418781696] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
This article presents a case study to show the usefulness and importance of using
factorial design in tissue engineering and biomaterials science. We used a full
factorial experimental design (2 × 2 × 2 × 3) to solve a routine query in every
biomaterial research project: the optimisation of cell seeding efficiency for
pre-clinical in vitro cell studies, the importance of which is often overlooked.
In addition, tissue-engineered scaffolds can be cellularised with relevant cell
type(s) to form implantable tissue constructs, where the cell seeding method
must be reliable and robust. Our results show the complex relationship between
cells and scaffolds and suggest that the optimum seeding conditions for each
material may be different due to different material properties, and therefore,
should be investigated for individual scaffolds. Our factorial experimental
design can be easily translated to other cell types and three-dimensional
biomaterials, where multiple interacting variables can be thoroughly
investigated for better understanding of cell–biomaterial interactions.
Collapse
Affiliation(s)
- Alexandra Levin
- Regenerative Biomaterials Group, RAFT Institute, Northwood, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Northwood, UK
| | | | | |
Collapse
|
23
|
Li Z, Jia S, Xiong Z, Long Q, Yan S, Hao F, Liu J, Yuan Z. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. J Biosci Bioeng 2018; 126:389-396. [PMID: 29685821 DOI: 10.1016/j.jbiosc.2018.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
Treating full-layer injury of bone and cartilage is currently a significant challenge in orthopedic trauma repair. Joint damage typically includes chondral defects, and the underlying subchondral defect sites are difficult to repair. Tissue engineering technology could potentially be used to treat such injuries; however, results to date been unsatisfactory. The aim of this study was to design a multilayer composite scaffold containing cartilage, bone, and calcified layers to simulate physiological full-thickness bone-cartilage structure. The cartilage layer was created using an improved temperature-gradient thermally induced crystallization technology. The bone and calcified layers were synthesized using 3D printing technology. We examined the scaffold by using scanning electron microscope (SEM), X-ray diffraction (XRD), fluorescence staining, and micro computed tomography (Micro-CT), and observed clearly oriented structures in the cartilage layer, overlapping structures in the bone scaffold, and a compressed calcified layer. Biomechanical performance testing showed that the scaffolds were significantly stronger than scaffolds without a calcified layer (traditional scaffolds) in maximum tensile strength and maximum shear strength (P < 0.05). After inoculating cells onto the scaffolds, we observed similar cell adherence and proliferation to that observed in traditional scaffolds, likely because of the high porosity of the whole scaffold. Our scaffolds could be used in bone and cartilage full-thickness injury repair methods, as well as applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China; Mechanical Engineering Department of Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, PR China; Xi'an Central Hospital, School of Medicine, Xi'an Jiao Tong University, West 5th Road, Xincheng District, Xi'an 710003, PR China
| | - Shuaijun Jia
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China
| | - Zhuo Xiong
- Mechanical Engineering Department of Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, PR China
| | - Qianfa Long
- Xi'an Central Hospital, School of Medicine, Xi'an Jiao Tong University, West 5th Road, Xincheng District, Xi'an 710003, PR China
| | - Shaorong Yan
- Xi'an Central Hospital, School of Medicine, Xi'an Jiao Tong University, West 5th Road, Xincheng District, Xi'an 710003, PR China
| | - Fu Hao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China
| | - Jian Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China
| | - Zhi Yuan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
24
|
Agrawal P, Pramanik K, Vishwanath V, Biswas A, Bissoyi A, Patra PK. Enhanced chondrogenesis of mesenchymal stem cells over silk fibroin/chitosan-chondroitin sulfate three dimensional scaffold in dynamic culture condition. J Biomed Mater Res B Appl Biomater 2018; 106:2576-2587. [DOI: 10.1002/jbm.b.34074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/30/2017] [Accepted: 12/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Parinita Agrawal
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Varshini Vishwanath
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Amit Biswas
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Akalabya Bissoyi
- Department of Biomedical Engineering; National Institute of Technology; Raipur Chhattisgarh India
| | - Pradeep Kumar Patra
- Department of Biochemistry; Pandit Jawahar Lal Nehru Memorial Medical College; Raipur Chhattisgarh India
| |
Collapse
|