1
|
Choi M, Al Fahad MA, Shanto PC, Park SS, Lee BT. Surface modification of decellularized kidney scaffold with chemokine and AKI-CKD cytokine juice to increase the recellularization efficiency of bio-engineered kidney. Biomaterials 2025; 316:123007. [PMID: 39674100 DOI: 10.1016/j.biomaterials.2024.123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent global health issue, primarily caused by glomerular dysfunction, diabetes, endovascular disorders, hypertensive nephrosclerosis, and other vascular diseases. Despite the increase in available organ sources, significant challenges remain in securing organ compatibility, prompting extensive research into creating a bio-artificial kidney free from immune rejection. In this study, a bio-engineered kidney was established using a stem cell chemoattractant within a bioreactor system; rBMSCs were used to recellularize the decellularized kidney scaffold coated with SDF-1α/AKI-CKD cytokine juice under mimic-hypoxic conditions as these chemokines and cytokines are crucial for the cell migration. LC-MS/MS proteomic analysis of the scaffold suggested that it contains various important proteins related to angiogenesis, cell migration, differentiation, etc. The in-silico binding simulation and Immunohistochemical (IHC) staining were utilized to detect the coated chemokines and cytokines. Cells were administered through both ureter and arterial routes of the kidney scaffold to differentiate into epithelial and endothelial cells. After 14 days of the recellularization process utilizing a mimic-hypoxia-induced bioreactor, the SDF-1α/AKI-CKD CJ-coated kidney scaffold exhibited high levels of cell attachment, migration, and proliferation in both the cortex and medulla. Additionally, the coating of the cytokines remarkably enhanced the expression of specific renal cell markers within the complex microfilter-like tubular structures. This study underscores a recellularization strategy that addresses the challenges associated with constructing bio-artificial kidneys and contributes to the growing field of bio-artificial organ research.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
2
|
Jahanvar M, Zahri S, Abdolmaleki A, Asadi A. Evaluation of decellularized sheep kidney scaffolds for renal tissue engineering: Biocompatibility and stem cell differentiation potential. Tissue Cell 2024; 91:102594. [PMID: 39531858 DOI: 10.1016/j.tice.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Tissue engineering (TE) combines scaffolds, cells, and bioactive chemicals in order to create tissues. The objective is to restore or sustain tissue functionality and expedite the recovery of damaged tissues or organs in a controlled laboratory environment. This study aimed to evaluate the properties and biocompatibility of decellularized sheep kidney scaffolds (DKS) and to explore the differentiation potential of adipose-derived mesenchymal stem cells (ADSCs) into renal cells. After decellularizing sheep kidneys using freeze-drying and detergent techniques, we conducted histological studies, DNA quantification, and ultrastructural evaluations using scanning electron microscopy (SEM). Furthermore, to assay the feasibility and attachment of stem cells to the decellularized scaffolds, ADSCs were cultured on the scaffolds and subjected to the MTT assay. The expression of the pax2 gene was analyzed using real-time PCR to determine the differentiation of MSCs into kidney cells. DNA quantitation revealed a significant reduction in the quantity of DNA present in the scaffold tissue compared to the control kidney tissue. Ultrastructural examination confirmed the preservation of the decellularized scaffold's ultrastructure. Histological analysis demonstrated the complete removal of nuclear material from the scaffold. Additionally, Pax2 gene expression was significantly increased in ADSC cells cultured on the scaffold compared to the control group. The results demonstrate that the produced scaffolds are well-suited for regenerative medicine, exhibiting excellent biocompatibility and providing a conducive environment for the differentiation of ADSCs.
Collapse
Affiliation(s)
- Maryam Jahanvar
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
3
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Jin Y, Sun Q, Ma R, Li R, Qiao R, Li J, Wang L, Hu Y. The trend of allogeneic tendon decellularization: literature review. Cell Tissue Bank 2024; 25:357-367. [PMID: 37355504 DOI: 10.1007/s10561-023-10097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Tendon injuries repair is a significant burden for orthopaedic surgeons. Finding a proper graft material to repair tendon is one of the main challenges in orthopaedics, for which the requirement of substitute for tendon repair would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon increasingly represents an interesting approach to treat tendon injuries and several articles have investigated the approaches of tendon decellularization. To understand the outcomes of the the approaches of tendon decellularization on effect of tendon transplantation, a literature review was performed. This review was conducted by searching in Pubmed and Embase and 64 studies were included in this study. The findings revealed that the common approaches to decellularize tendon include chemical, physical, and enzymatic decellularization methods or their combination. With the development of tissue engineering, researchers also put forward new theories such as automatic acellular machine, 3D printing technology to manufacture acellular scaffold.
Collapse
Affiliation(s)
- Yangyang Jin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rongxing Ma
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruifeng Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruiqi Qiao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jikai Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Limin Wang
- Beijing Wonderful Medical Biomaterials Co., Ltd., Beijing, China
| | - Yongcheng Hu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300000, China.
| |
Collapse
|
5
|
Mazloomnejad R, Babajani A, Kasravi M, Ahmadi A, Shariatzadeh S, Bahrami S, Niknejad H. Angiogenesis and Re-endothelialization in decellularized scaffolds: Recent advances and current challenges in tissue engineering. Front Bioeng Biotechnol 2023; 11:1103727. [PMID: 36873356 PMCID: PMC9978201 DOI: 10.3389/fbioe.2023.1103727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Decellularization of tissues and organs has recently become a promising approach in tissue engineering and regenerative medicine to circumvent the challenges of organ donation and complications of transplantations. However, one main obstacle to reaching this goal is acellular vasculature angiogenesis and endothelialization. Achieving an intact and functional vascular structure as a vital pathway for supplying oxygen and nutrients remains the decisive challenge in the decellularization/re-endothelialization procedure. In order to better understand and overcome this issue, complete and appropriate knowledge of endothelialization and its determining variables is required. Decellularization methods and their effectiveness, biological and mechanical characteristics of acellular scaffolds, artificial and biological bioreactors, and their possible applications, extracellular matrix surface modification, and different types of utilized cells are factors affecting endothelialization consequences. This review focuses on the characteristics of endothelialization and how to optimize them, as well as discussing recent developments in the process of re-endothelialization.
Collapse
Affiliation(s)
- Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kushige H, Amano Y, Yagi H, Morisaku T, Kojima H, Satou A, Hamada KI, Kitagawa Y. Injectable extracellular matrix hydrogels contribute to native cell infiltration in a rat partial nephrectomy model. J Biomed Mater Res B Appl Biomater 2023; 111:184-193. [PMID: 36053744 DOI: 10.1002/jbm.b.35144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Decellularized extracellular matrix (dECM) hydrogels have cytocompatibility, and are currently being investigated for application in soft tissues as a material that promotes native cell infiltration and tissue reconstruction. A dECM hydrogel has broad potential for application in organs with complex structures or various tissue injury models. In this study, we investigated the practical application of a dECM hydrogel by injecting a kidney-derived dECM hydrogel into a rat partial nephrectomy model. The prepared dECM hydrogel was adjustable in viscosity to allow holding at the excision site, and after gelation, had an elastic modulus similar to that of kidney tissue. In addition, the migration of renal epithelial cells and vascular endothelial cells embedded in dECM hydrogels was observed in vitro. Four weeks after injection of the dECM hydrogel to the partial excision site of the kidneys, infiltration of renal tubular constituent cells and native cells with high proliferative activity, as well as angiogenesis, were observed inside the injected areas. This study is the first to show that dECM hydrogels can be applied to the kidney, one of the most complex structural organs and that they can function as a scaffold to induce angiogenesis and infiltration of organ-specific renal tubular constituent cells, providing fundamental insights for further application of dECM hydrogels.
Collapse
Affiliation(s)
- Hiroko Kushige
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,JSR-Keio University Medical and Chemical Innovation Center (JKiC), Keio University School of Medicine, Tokyo, Japan
| | - Yuki Amano
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,JSR-Keio University Medical and Chemical Innovation Center (JKiC), Keio University School of Medicine, Tokyo, Japan
| | - Toshinori Morisaku
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,JSR-Keio University Medical and Chemical Innovation Center (JKiC), Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kojima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,JSR-Keio University Medical and Chemical Innovation Center (JKiC), Keio University School of Medicine, Tokyo, Japan
| | - Akiko Satou
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Ken-Ichi Hamada
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,JSR-Keio University Medical and Chemical Innovation Center (JKiC), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
8
|
Choi M, Yang YB, Park S, Rahaman S, Tripathi G, Lee BT. Effect of Co-culture of mesenchymal stem cell and glomerulus endothelial cell to promote endothelialization under optimized perfusion flow rate in whole renal ECM scaffold. Mater Today Bio 2022; 17:100464. [PMID: 36325425 PMCID: PMC9619032 DOI: 10.1016/j.mtbio.2022.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
In recent era, many researches on implantable bio-artificial organs has been increased owing to large gap between donors and receivers. Comprehensive organ based researches on perfusion culture for cell injury using different flow rate have not been conducted at the cellular level. The present study investigated the co-culture of rat glomerulus endothelial cell (rGEC) and rat bone marrow mesenchymal stem cells (rBMSC) to develop micro vascularization in the kidney scaffolds culturing by bioreactor system. To obtain kidney scaffold, extracted rat kidneys were decellularized by 1% sodium dodecyl sulfate (SDS), 1% triton X-100, and distilled water. Expanded rGECs were injected through decellularized kidney scaffold artery and cultured using bioreactor system. Vascular endothelial cells adhered and proliferated on the renal ECM scaffold in the bioreactor system for 3, 7 and 14 days. Static, 1 ml/min and 2 ml/min flow rates (FR) were tested and among them, 1 ml/min flow rate was selected based on cell viability, glomerulus character, inflammation/endothelialization proteins expression level. However, the flow injury was still existed on primary cell cultured at vessel in kidney scaffold. Therefore, co-culture of rGEC + rBMSC found suitable to possibly solve this problem and resulted increased cell proliferation and micro-vascularization in the glomerulus, reducing inflammation and cell death which induced by flow injury. The optimized perfusion rate under rGEC + rBMSC co-culture conditions resulted in enhanced endocellularization to make ECM derived implantable renal scaffold and might be useful as a way of treatment of the acute renal failure.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Yu-Bin Yang
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea,Corresponding author. Department of Regenerative Medicine, College of Medicine, Soonchunhyang University.
| |
Collapse
|
9
|
Khedr M, Barakat N, Mohey El-Deen I, Zahran F. Impact of preconditioning stem cells with all-trans retinoic acid signaling pathway on cisplatin-induced nephrotoxicity by down-regulation of TGFβ1, IL-6, and caspase-3 and up-regulation of HIF1α and VEGF. Saudi J Biol Sci 2022; 29:831-839. [PMID: 35197751 PMCID: PMC8848137 DOI: 10.1016/j.sjbs.2021.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
The survival reduction after transplantation limited the clinical uses of stem cells so the current study explored preconditioning adipose-derived stem cells (ADMSCs) and all-trans retinoic acid (ATRA) effects on cisplatin that caused acute kidney injury (AKI). One hundred and fifty Sprague–Dawley male rats were distributed into five groups: control group; Cisplatin (CIS) group; CIS and ATRA group; CIS and ADMSC group, and CIS, ATRA, and ADMSCs group. Ten rats were euthanized after 3rd, 7th, and 11th days from CIS injection. Renal function, molecular studies, and histopathological analysis were studied. The preconditioning of ADMSCs with ATRA increased the viability of the cells which was reflected in the amelioration of kidney functions after CIS injection by the significant reduction of serum creatinine, microalbuminuria, as well as NO, and the significant rise of creatinine clearance, as well as SOD compared to the group of cisplatin. ATRA also supported ADMSCs by a significant down-regulation of caspase-3, il-6 and TGFβ1, and a significant up-regulation of HIF1, VEGF and CD31 compared to group of cisplatin which reversed the cisplatin effect. ATRA increased renoprotective properties of ADMSCs against cisplatin- induced AKI by reducing the apoptosis, inflammation, and stimulating angiogenesis.
Collapse
|
10
|
Have we hit a wall with whole kidney decellularization and recellularization: A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
12
|
Storti G, Favi E, Albanesi F, Kim BS, Cervelli V. Adipose-Derived Stem/Stromal Cells in Kidney Transplantation: Status Quo and Future Perspectives. Int J Mol Sci 2021; 22:11188. [PMID: 34681848 PMCID: PMC8538841 DOI: 10.3390/ijms222011188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Francesca Albanesi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| |
Collapse
|
13
|
Ahmed E, Saleh T, Xu M. Recellularization of Native Tissue Derived Acellular Scaffolds with Mesenchymal Stem Cells. Cells 2021; 10:cells10071787. [PMID: 34359955 PMCID: PMC8304639 DOI: 10.3390/cells10071787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The functionalization of decellularized scaffolds is still challenging because of the recellularization-related limitations, including the finding of the most optimal kind of cell(s) and the best way to control their distribution within the scaffolds to generate native mimicking tissues. That is why researchers have been encouraged to study stem cells, in particular, mesenchymal stem cells (MSCs), as alternative cells to repopulate and functionalize the scaffolds properly. MSCs could be obtained from various sources and have therapeutic effects on a wide range of inflammatory/degenerative diseases. Therefore, in this mini-review, we will discuss the benefits using of MSCs for recellularization, the factors affecting their efficiency, and the drawbacks that may need to be overcome to generate bioengineered transplantable organs.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Tarek Saleh
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-4725; Fax: +1-513-558-2141
| |
Collapse
|
14
|
Sobreiro‐Almeida R, Quinteira R, Neves NM. Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies. Adv Healthc Mater 2021; 10:e2100160. [PMID: 34137210 DOI: 10.1002/adhm.202100160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECM) are currently being studied as an alternative source for organ transplantation or as new solutions to treat kidney injuries, which can evolve to end-stage renal disease, a life devastating condition. This paper provides an overview on the current knowledge in kidney ECM and its usefulness on future investigations. The composition and structure of kidney ECM is herein associated with its intrinsic capacity of remodeling and repair after insult. Moreover, it provides a deeper insight on altered ECM components during disease. The use of decellularized kidney matrices is discussed in the second part of the review, with emphasis on how these matrices contribute to tissue-specific differentiation of embryonic, pluripotent, and other stem cells. The evolution on the field toward different uses of xenogeneic ECM as a biological scaffold material is discussed, namely the major outcomes on whole kidney recellularization and its in vivo implantation. At last, the recent literature on the use of processed kidney decellularized ECM to produce diverse biomaterial substrates, such as hydrogels, membranes, and bioinks are reviewed, with emphasis on future perspectives of its translation into the clinic.
Collapse
Affiliation(s)
- Rita Sobreiro‐Almeida
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Quinteira
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
15
|
TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med 2021; 6:12. [PMID: 33674599 PMCID: PMC7935966 DOI: 10.1038/s41536-021-00124-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
The use of decellularized whole-organ scaffolds for bioengineering of organs is a promising avenue to circumvent the shortage of donor organs for transplantation. However, recellularization of acellular scaffolds from multicellular organs like the lung with a variety of different cell types remains a challenge. Multipotent cells could be an ideal cell source for recellularization. Here we investigated the hierarchical differentiation process of multipotent ES-derived endoderm cells into proximal airway epithelial cells on acellular lung scaffolds. The first cells to emerge on the scaffolds were TP63+ cells, followed by TP63+/KRT5+ basal cells, and finally multi-ciliated and secretory airway epithelial cells. TP63+/KRT5+ basal cells on the scaffolds simultaneously expressed KRT14, like basal cells involved in airway repair after injury. Removal of TP63 by CRISPR/Cas9 in the ES cells halted basal and airway cell differentiation on the scaffolds. These findings suggest that differentiation of ES-derived endoderm cells into airway cells on decellularized lung scaffolds proceeds via TP63+ basal cell progenitors and tracks a regenerative repair pathway. Understanding the process of differentiation is key for choosing the cell source for repopulation of a decellularized organ scaffold. Our data support the use of airway basal cells for repopulating the airway side of an acellular lung scaffold.
Collapse
|
16
|
Park Y, Huh KM, Kang SW. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int J Mol Sci 2021; 22:2491. [PMID: 33801273 PMCID: PMC7958286 DOI: 10.3390/ijms22052491] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.
Collapse
Affiliation(s)
- Yujin Park
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|
17
|
Ben Hamouda S, Vargas A, Boivin R, Miglino MA, da Palma RK, Lavoie JP. Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells. J Equine Vet Sci 2020; 96:103313. [PMID: 33349413 DOI: 10.1016/j.jevs.2020.103313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Severe asthma is associated with an increased airway smooth muscle (ASM) mass and altered composition of the extracellular matrix (ECM). Studies have indicated that ECM-ASM cell interactions contribute to this remodeling and its limited reversibility with current therapy. Three-dimensional matrices allow the study of complex cellular responses to different stimuli in an almost natural environment. Our goal was to obtain acellular bronchial matrices and then develop a recellularization protocol with ASM cells. We studied equine bronchi as horses spontaneously develop a human asthma-like disease. The bronchi were decellularized using Triton/Sodium Deoxycholate. The obtained scaffolds retained their anatomical and histological properties. Using immunohistochemistry and a semi-quantitative score to compare native bronchi to scaffolds revealed no significant variation for matrixial proteins. DNA quantification and electrophoresis revealed that most DNA was 29.6 ng/mg of tissue ± 5.6, with remaining fragments of less than 100 bp. Primary ASM cells were seeded on the scaffolds. Histological analysis of the recellularizations showed that ASM cells migrated and proliferated primarily in the decellularized smooth muscle matrix, suggesting a chemotactic effect of the scaffolds. This is the first report of primary ASM cells preferentially repopulating the smooth muscle matrix layer in bronchial matrices. This protocol is now being used to study the molecular interactions occurring between the asthmatic ECMs and ASM to identify effectors of asthmatic bronchial remodeling.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada.
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada.
| |
Collapse
|
18
|
Decellularization and Recellularization of Rabbit Kidney Using Adipose-Derived Mesenchymal Stem Cells for Renal Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Contessi Negrini N, Toffoletto N, Farè S, Altomare L. Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and Tendon Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:723. [PMID: 32714912 PMCID: PMC7344190 DOI: 10.3389/fbioe.2020.00723] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Decellularized tissues are a valid alternative as tissue engineering scaffolds, thanks to the three-dimensional structure that mimics native tissues to be regenerated and the biomimetic microenvironment for cells and tissues growth. Despite decellularized animal tissues have long been used, plant tissue decellularized scaffolds might overcome availability issues, high costs and ethical concerns related to the use of animal sources. The wide range of features covered by different plants offers a unique opportunity for the development of tissue-specific scaffolds, depending on the morphological, physical and mechanical peculiarities of each plant. Herein, three different plant tissues (i.e., apple, carrot, and celery) were decellularized and, according to their peculiar properties (i.e., porosity, mechanical properties), addressed to regeneration of adipose tissue, bone tissue and tendons, respectively. Decellularized apple, carrot and celery maintained their porous structure, with pores ranging from 70 to 420 μm, depending on the plant source, and were stable in PBS at 37°C up to 7 weeks. Different mechanical properties (i.e., Eapple = 4 kPa, Ecarrot = 43 kPa, Ecelery = 590 kPa) were measured and no indirect cytotoxic effects were demonstrated in vitro after plants decellularization. After coating with poly-L-lysine, apples supported 3T3-L1 preadipocytes adhesion, proliferation and adipogenic differentiation; carrots supported MC3T3-E1 pre-osteoblasts adhesion, proliferation and osteogenic differentiation; celery supported L929 cells adhesion, proliferation and guided anisotropic cells orientation. The versatile features of decellularized plant tissues and their potential for the regeneration of different tissues are proved in this work.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Nadia Toffoletto
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
20
|
Liu D, Cheng F, Pan S, Liu Z. Stem cells: a potential treatment option for kidney diseases. Stem Cell Res Ther 2020; 11:249. [PMID: 32586408 PMCID: PMC7318741 DOI: 10.1186/s13287-020-01751-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of kidney diseases is emerging as a public health problem. Stem cells (SCs), currently considered as a promising tool for therapeutic application, have aroused considerable interest and expectations. With self-renewal capabilities and great potential for proliferation and differentiation, stem cell therapy opens new avenues for the development of renal function and structural repair in kidney diseases. Mounting evidence suggests that stem cells exert a therapeutic effect mainly by replacing damaged tissues and paracrine pathways. The benefits of various types of SCs in acute kidney disease and chronic kidney disease have been demonstrated in preclinical studies, and preliminary results of clinical trials present its safety and tolerability. This review will focus on the stem cell-based therapy approaches for the treatment of kidney diseases, including various cell sources used, possible mechanisms involved, and outcomes that are generated so far, along with prospects and challenges in clinical application.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
21
|
Paredes J, Marvin JC, Vaughn B, Andarawis-Puri N. Innate tissue properties drive improved tendon healing in MRL/MpJ and harness cues that enhance behavior of canonical healing cells. FASEB J 2020; 34:8341-8356. [PMID: 32350938 DOI: 10.1096/fj.201902825rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Development of tendon therapeutics has been hindered by the lack of informative adult mammalian models of regeneration. Murphy Roth's Large (MRL/MpJ) mice exhibit improved healing following acute tendon injuries, but the driver of this regenerative healing response remains unknown. The tissue-specific attributes of this healing response, despite a shared systemic environment within the mouse, support the hypothesis of a tissue-driven mechanism for scarless healing. Our objective was to investigate the potential of MRL/MpJ tendon extracellular matrix (ECM)-derived coatings to regulate scar-mediated healing. We found that deviations in the composition of key structural proteins within MRL/MpJ vs C57Bl/6 tendons occur synergistically to mediate the improvements in structure and mechanics following a 1-mm midsubstance injury. Improvement in mechanical properties of healing MRL/MpJ vs C57Bl/6 tendons that were isolated from systemic contributions via organ culture, highlighted the innate tendon environment as the driver of scarless healing. Finally, we established that decellularized coatings derived from early-deposited MRL/MpJ tendon provisional extracellular matrix (provisional-ECM), can modulate canonical healing B6 tendon cell behavior by inducing morphological changes and increasing proliferation in vitro. This study supports that the unique compositional cues in MRL/MpJ provisional-ECM have the therapeutic capability to motivate canonically healing cells toward improved behavior; enhancing our ability to develop effective therapeutics.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
22
|
Liu Y, Huang L, Yuan W, Zhang D, Gu Y, Huang J, Murphy S, Ali M, Zhang Y, Song L. Sustained release of stromal cell-derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits. J Biomed Mater Res A 2020; 108:1760-1773. [PMID: 32276293 DOI: 10.1002/jbm.a.36943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
We developed a stromal cell-derived factor-1 alpha (SDF-1α)-aligned silk fibroin (SF)/three-dimensional porous bladder acellular matrix graft (3D-BAMG) composite scaffold for long-section ventral urethral regeneration and repair in vivo. SDF-1α-aligned SF microfiber/3D-BAMG, aligned SF microfiber/3D-BAMG, and nonaligned SF microfiber/3D-BAMG scaffolds were prepared using electrostatic spinning and wet processing. Adipose-derived stem cell (ADSC) and bone marrow stromal cell (BMSC) migration was assessed in the SDF-1α-loaded scaffolds. Sustained SDF-1α release in vitro and vivo was analyzed using enzyme-linked immunosorbent assay (ELISA) and western blotting, respectively. The scaffolds were used to repair a 1.5 × 1 cm2 ventral urethral defect in male rabbits in vivo. General observation and retrograde urinary tract contrast assessment were used to examine urethral lumen patency and continuity at 1 and 3 months post-surgery. Postoperative rehabilitation was evaluated using histological detection. The composite scaffolds sustained SDF-1α release for over 16 days in vitro. SDF-1α-aligned SF nanofiber promoted regeneration of urethral mucosa, submucosal smooth muscles, and microvasculature, increased cellular proliferation, and reduced collagen deposition. SDF-1α expression was increased in reconstructed urethra at 3 months post-surgery in SDF-1α-aligned SF group. SDF-1α-aligned SF microfiber/3D-BAMG scaffolds may be used to repair and reconstruct long urethral defects because they accelerate urethral regeneration.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dongliang Zhang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianwen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sean Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Mohamed Ali
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Mirzaeian L, Eivazkhani F, Hezavehei M, Moini A, Esfandiari F, Valojerdi MR, Fathi R. Optimizing The Cell Seeding Protocol to Human Decellularized Ovarian Scaffold: Application of Dynamic System for Bio-Engineering. CELL JOURNAL 2019; 22:227-235. [PMID: 31721538 PMCID: PMC6874796 DOI: 10.22074/cellj.2020.6604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Objective Decellularized tissue scaffolds provide an extracellular matrix to control stem cells differentiation toward
specific lineages. The application of mesenchymal stem cells for artificial ovary production may enhance ex vivo functions
of the ovary. On the other hand, the scaffold needs interaction and integration with cells. Thus, the development of
ovarian engineered constructs (OVECs) requires the use of efficient methods for seeding of the cells into the ovarian
and other types of scaffolds. The main goal of the present study was to develop an optimized culture system for efficient
seeding of peritoneum mesenchymal stem cells (PMSCs) into human decellularized ovarian scaffold.
Materials and Methods In this experimental study, three methods were used for cellular seeding including rotational
(spinner flask) and static (conventional and injection) seeding cultures. OVECs were evaluated with Hematoxylin and
Eosin staining and viability analyses for the seeded PMSCs. Then, immunohistochemistry analysis was performed
using the best method of cellular seeding for primordial germ cell-like cells, mesenchymal stem cells and proliferation
markers. Stereology analysis was also performed for the number of penetrated cells into the OVECs.
Results Our results showed that rotational seeding increases the permeability of PMSCs into the scaffold and survival
rate of the seeded PMSCs, comparing to the other methods. On the other hand, rotationally seeded PMSCs had a more
favorable capability of proliferation with Ki67 expression and differentiation to ovarian specific cells with expression
of primordial germ cell line markers without mesenchymal stem cells markers production. Furthermore, stereology
showed a more favorable distribution of PMSCs along the outer surfaces of the OVEC with further distribution at the
central part of the scaffold. The average total cell values were determined 2142187 cells/mm3 on each OVEC.
Conclusion The rotational seeding method is a more favorable approach to cell seeding into ovarian decellularized
tissue than static seeding.
Collapse
Affiliation(s)
- Leila Mirzaeian
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
Zhang J, Li K, Kong F, Sun C, Zhang D, Yu X, Wang X, Li X, Liu T, Shao G, Guan Y, Zhao S. Induced Intermediate Mesoderm Combined with Decellularized Kidney Scaffolds for Functional Engineering Kidney. Tissue Eng Regen Med 2019; 16:501-512. [PMID: 31624705 DOI: 10.1007/s13770-019-00197-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Chronic kidney disease is a severe threat to human health with no ideal treatment strategy. Mature mammalian kidneys have a fixed number of nephrons, and regeneration is difficult once they are damaged. For this reason, developing an efficient approach to achieve kidney regeneration is necessary. The technology of the combination of decellularized kidney scaffolds with stem cells has emerged as a new strategy; however, in previous studies, the differentiation of stem cells in decellularized scaffolds was insufficient for functional kidney regeneration, and many problems remain. Methods We used 0.5% sodium dodecyl sulfate (SDS) to produce rat kidney decellularized scaffolds, and induce adipose-derived stem cells (ADSCs) into intermediate mesoderm by adding Wnt agonist CHIR99021 and FGF9 in vitro. The characteristics of decellularized scaffolds and intermediate mesoderm induced from adipose-derived stem cells were identified. The scaffolds were recellularized with ADSCs and intermediate mesoderm cells through the renal artery and ureter. After cocultured for 10 days, cells adhesion and differentiation was evaluated. Results Intermediate mesoderm cells were successfully induced from ADSCs and identified by immunofluorescence and Western blotting assays (OSR1 + , PAX2 +). Immunofluorescence showed that intermediate mesoderm cells differentiated into tubular-like (E-CAD + , GATA3 +) and podocyte-like (WT1 +) cells with higher differentiation efficiency than ADSCs in the decellularized scaffolds. Comparatively, this phenomenon was not observed in induced intermediate mesoderm cells cultured in vitro. Conclusion In this study, we demonstrated that intermediate mesoderm cells could be induced from ADSCs and that they could differentiate well after cocultured with decellularized scaffolds.
Collapse
Affiliation(s)
- Jianye Zhang
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Kailin Li
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Feng Kong
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,Key Laboratory for Kidney Regeneration of Shandong Province, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,4Shandong University- Karolinska Institutet Collaborative Laboratory for Stem Cell Research, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Chao Sun
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Denglu Zhang
- 5The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, 250011 Shandong People's Republic of China
| | - Xin Yu
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Xuesheng Wang
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Xian Li
- 6The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Tongyan Liu
- 6The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Guangfeng Shao
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Yong Guan
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,7Shandong Provincial Hospital of Shandong University, 324 Jingwuweiqi Road, Jinan, 250021 Shandong People's Republic of China
| | - Shengtian Zhao
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,Key Laboratory for Kidney Regeneration of Shandong Province, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,4Shandong University- Karolinska Institutet Collaborative Laboratory for Stem Cell Research, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,7Shandong Provincial Hospital of Shandong University, 324 Jingwuweiqi Road, Jinan, 250021 Shandong People's Republic of China
| |
Collapse
|
25
|
Grünherz L, Sanchez-Macedo N, Frueh FS, McLuckie M, Lindenblatt N. Nanofat applications: from clinical esthetics to regenerative research. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Vishwakarma SK, Lakkireddy C, Bardia A, Paspala SAB, Khan AA. Engineering bio-mimetic humanized neurological constructs using acellularized scaffolds of cryopreserved meningeal tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:34-44. [PMID: 31147006 DOI: 10.1016/j.msec.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) is one of the most precarious conditions which have been one of the major reasons for continuous increasing mortality rate of SCI patients. Currently, there is no effective treatment modality for SCI patients posing major threat to the scientific and medical community. The available strategies don't mimic with the natural processes of nervous tissues repair/regeneration and majority of the approaches may induce the additional fibrotic or immunological response at the injury site and are not readily available on demand. To overcome these hurdles, we have developed a ready to use bioengineered human functional neurological construct (BHNC) for regenerative applications in SCI defects. We used cryopreserved meningeal tissues (CMT) for bioengineering these neurological constructs using acellularization and repopulation technology. The technology adopted herein generates intact neurological scaffolds from CMT and retains several crucial structural, biochemical and mechanical cues to enhance the regenerative mechanisms. The neurogenic differentiation on CMT scaffolds was almost similar to the freshly prepared meningeal scaffolds and mimics with the natural nervous tissue developmental mechanisms which offer intact 3D-microarchitecture and hospitable microenvironment enriched with several crucial neurotrophins for long-term cell survival and function. Functional assessment of developed BHNC showed highly increased positive staining for pre-synaptic granules of Synapsis-1 along with MAP-2 antibody with punctuate distribution in axonal regions of the neuronal cells which was well supported by the gene expression analysis of functional transcripts. Given the significant improvement in the field may enable to generate more such ready to use functional BHNC for wider applicability in SCI repair/regeneration.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India.
| |
Collapse
|
27
|
Matoba Y, Kisu I, Sera A, Yanokura M, Banno K, Aoki D. Current status of uterine regenerative medicine for absolute uterine factor infertility. Biomed Rep 2019; 10:79-86. [PMID: 30675350 PMCID: PMC6341411 DOI: 10.3892/br.2019.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Though assisted reproduction technology has been developed, a treatment for absolute uterine factor infertility (AUFI), such as defects in the uterus, has not yet been established. Regenerative medicine has been developed and applied clinically over recent years; however, whole solid organs still cannot be produced. Though uterine regeneration has the potential to be a treatment for AUFI, there have been only a few studies on uterine regeneration involving the myometrium in vivo. In the present report, those relevant articles are reviewed. A literature search was conducted in PubMed with a combination of key words, and 10 articles were found, including nine in rat models and one in a mouse model. Of these studies, eight used scaffolds and two were performed without scaffolds. In four of these studies, scaffolds were re-cellularized with various cells. In the remaining four studies, scaffolds were transplanted alone, or other structures were used. Though the methods differed, the injured uterus recovered well, morphologically and functionally, in every study. Only 10 articles were relevant to our investigation, but the results were favorable, if limited to partial regeneration. Recently, uterus transplantation (UTx) has been investigated as a treatment for AUFI. However, UTx has many problems in the medical, ethical and social fields. Though the artificial uterus was also researched and some improvements in this technology were reported, it will take long time for this to reach a clinically applicable stage. Though the results of uterine regeneration studies were promising, these studies were conducted using animal models, so further human studies and trials are needed.
Collapse
Affiliation(s)
- Yusuke Matoba
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Asako Sera
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
28
|
Pan J, Li H, Fang Y, Shen YB, Zhou XY, Zhu F, Zhu LX, Du YH, Yu XF, Wang Y, Zhou XH, Wang YY, Wu YJ. Regeneration of a Bioengineered Thyroid Using Decellularized Thyroid Matrix. Thyroid 2019; 29:142-152. [PMID: 30375266 DOI: 10.1089/thy.2018.0068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hypothyroidism is a common hormone deficiency condition. Regenerative medicine approaches, such as a bioengineered thyroid, have been proposed as potential therapeutic alternatives for patients with hypothyroidism. This study demonstrates a novel approach to generate thyroid grafts using decellularized rat thyroid matrix. METHODS Isolated rat thyroid glands were perfused with 1% sodium dodecyl sulfate to generate a decellularized thyroid scaffold. The rat thyroid scaffold was then recellularized with rat thyroid cell line to reconstruct the thyroid by perfusion seeding technique. As a pilot study, the decellularized rat thyroid scaffold was perfused with human-derived thyrocytes and parathyroid cells. RESULTS The decellularization process retained the intricate three-dimensional microarchitecture with a perfusable vascular network and native extracellular matrix components, allowing efficient reseeding of the thyroid matrix with the FRTL-5 rat thyroid cell line generating three-dimensional follicular structures in vitro. In addition, the recellularized thyroid showed successful cellular engraftment and thyroid-specific function, including synthesis of thyroglobulin and thyroid peroxidase. Moreover, the decellularized rat thyroid scaffold could further be recellularized with human-derived thyroid cells and parathyroid cells to reconstruct a humanized bioartificial endocrine organ, which maintained expression of critical genes such as thyroglobulin, thyroid peroxidase, and parathyroid hormone. CONCLUSION These findings demonstrate the utility of a decellularized thyroid extracellular matrix scaffold system for the development of functional, bioengineered thyroid tissue, which could potentially be used to treat hypothyroidism.
Collapse
Affiliation(s)
- Jun Pan
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Hui Li
- 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yun Fang
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yi-Bin Shen
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xue-Yu Zhou
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Feng Zhu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Li-Xian Zhu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ye-Hui Du
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiong-Fei Yu
- 3 Cancer Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yan Wang
- 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xin-Hui Zhou
- 4 Department of Gynecology; and School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ying-Ying Wang
- 5 Kidney Disease Center; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yi-Jun Wu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
29
|
Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74:74-89. [PMID: 29702289 DOI: 10.1016/j.actbio.2018.04.044] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
Of all biologic matrices, decellularized extracellular matrix (dECM) has emerged as a promising tool used either alone or when combined with other biologics in the fields of tissue engineering or regenerative medicine - both preclinically and clinically. dECM provides a native cellular environment that combines its unique composition and architecture. It can be widely obtained from native organs of different species after being decellularized and is entitled to provide necessary cues to cells homing. In this review, the superiority of the macro- and micro-architecture of dECM is described as are methods by which these unique characteristics are being harnessed to aid in the repair and regeneration of organs and tissues. Finally, an overview of the state of research regarding the clinical use of different matrices and the common challenges faced in using dECM are provided, with possible solutions to help translate naturally derived dECM matrices into more robust clinical use. STATEMENT OF SIGNIFICANCE Ideal scaffolds mimic nature and provide an environment recognized by cells as proper. Biologically derived matrices can provide biological cues, such as sites for cell adhesion, in addition to the mechanical support provided by synthetic matrices. Decellularized extracellular matrix is the closest scaffold to nature, combining unique micro- and macro-architectural characteristics with an equally unique complex composition. The decellularization process preserves structural integrity, ensuring an intact vasculature. As this multifunctional structure can also induce cell differentiation and maturation, it could become the gold standard for scaffolds.
Collapse
|