1
|
Wang L, Cai F, Li Y, Lin X, Wang Y, Liang W, Liu C, Wang C, Ruan J. pH-Responsive Block Copolymer Micelles of Temsirolimus: Preparation, Characterization and Antitumor Activity Evaluation. Int J Nanomedicine 2024; 19:9821-9841. [PMID: 39345910 PMCID: PMC11430863 DOI: 10.2147/ijn.s469913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Renal cell carcinoma (RCC) is the most common and lethal type of urogenital cancer, with one-third of new cases presenting as metastatic RCC (mRCC), which, being the seventh most common cancer in men and the ninth in women, poses a significant challenge. For patients with poor prognosis, temsirolimus (TEM) has been approved for first-line therapy, possessing pharmacodynamic activities that block cancer cell growth and inhibit proliferation-associated proteins. However, TEM suffers from poor water solubility, low bioavailability, and systemic side effects. This study aims to develop a novel drug formulation for the treatment of RCC. Methods In this study, amphiphilic block copolymer (poly(ethylene glycol) monomethyl ether-poly(beta-amino ester)) (mPEG-PBAE) was utilized as a drug delivery vehicle and TEM-loaded micelles were prepared by thin-film hydration method by loading TEM inside the nanoparticles. Then, the molecular weight of mPEG-PBAE was controlled to make it realize hydrophobic-hydrophilic transition in the corresponding pH range thereby constructing pH-responsive TEM-loaded micelles. Characterization of pH-responsive TEM-loaded nanomicelles particle size, potential and micromorphology while its determination of drug-loading properties, in vitro release properties. Finally, pharmacodynamics and hepatorenal toxicity were further evaluated. Results TEM loading in mPEG-PBAE increased the solubility of TEM in water from 2.6 μg/mL to more than 5 mg/mL. The pH-responsive TEM-loaded nanomicelles were in the form of spheres or spheroidal shapes with an average particle size of 43.83 nm and a Zeta potential of 1.79 mV. The entrapment efficiency (EE) of pH-responsive TEM nanomicelles with 12.5% drug loading reached 95.27%. Under the environment of pH 6.7, the TEM was released rapidly within 12 h, and the release rate could reach 73.12% with significant pH-dependent characteristics. In vitro experiments showed that mPEG-PBAE preparation of TEM-loaded micelles had non-hemolytic properties and had significant inhibitory effects on cancer cells. In vivo experiments demonstrated that pH-responsive TEM-loaded micelles had excellent antitumor effects with significantly reduced liver and kidney toxicity. Conclusion In conclusion, we successfully prepared pH-responsive TEM-loaded micelles. The results showed that pH-responsive TEM-loaded micelles can achieve passive tumor targeting of TEM, and take advantage of the acidic conditions in tumor tissues to achieve rapid drug release.
Collapse
Affiliation(s)
- Ling Wang
- School of Pharmacy, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Molecular Biology Laboratory of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Fangqing Cai
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yixuan Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Xiaolan Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yuting Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Weijie Liang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Caiyu Liu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, People’s Republic of China
| | - Cunze Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Junshan Ruan
- School of Pharmacy, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Molecular Biology Laboratory of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
2
|
Tan L, Fan J, Zhou Y, Xiong D, Duan M, Hu D, Wu Z. Preparation of reversible cross-linked amphiphilic polymeric micelles with pH-responsive behavior for smart drug delivery. RSC Adv 2023; 13:28165-28178. [PMID: 37753398 PMCID: PMC10518665 DOI: 10.1039/d3ra05575b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
A new type of reversible cross-linked and pH-responsive polymeric micelle (PM), poly[polyethylene glycol methacrylate-co-2-(acetoacetoxy)ethyl methacrylate]-b-poly [2-(dimethylamino)ethyl methacrylate] [P(PEGMA-co-AEMA)-b-PDMAEMA], was synthesized for targeted delivery of curcumin. After reversible cross-linking of the micellar shell, the PMs with a typical core-shell structure exhibited excellent stability against extensive dilution and good reversibility of pH-responsiveness in solutions with different pH values. P(PEGMA9-co-AEMA6)-b-PDMAEMA10 has the lowest critical micelle concentration (CMC) value (0.0041 mg mL-1), the highest loading capacity (13.86%) and entrapment efficiency (97.03%). A slow sustained drug release at pH 7.4 with 12.36% in 108 h, while a fast release (42.36%) was observed at pH 5.0. Furthermore, a dissipative particle dynamics (DPD) simulation method was employed to investigate the self-assembly process and pH-responsive behavior of PMs. The optimal drug-carrier ratio (2%) and fraction of water (92%) were confirmed by analyzing the drug distribution and morphology of micelles during the self-assembly process of the block copolymer. The simulation results were consistent with experimental results, indicating DPD simulation shows potential to study the structure properties of reversible cross-linked micelles. The present findings provide a new method for the development of SDDS with good structural stability and controlled drug release properties.
Collapse
Affiliation(s)
- Liu Tan
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Integration, Xiangtan University Xiangtan 411105 China
| | - Jinling Fan
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
| | - Yuqing Zhou
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
| | - Di Xiong
- School of Mechanical & Automotive Engineering, South China University of Technology Guangzhou 510640 China
| | - Manzhen Duan
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
| | - Ding Hu
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Integration, Xiangtan University Xiangtan 411105 China
| | - Zhimin Wu
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Integration, Xiangtan University Xiangtan 411105 China
| |
Collapse
|
3
|
Nair K, Bhat AR. Applications of Gene Therapy in Dentistry: A Review Article. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2023. [DOI: 10.1055/s-0042-1759711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractGene therapy promises to possess a good prospect in bridging the gap between dental applications and medicine. The dynamic therapeutic modalities of gene therapy have been advancing rapidly. Conventional approaches are being revamped to be more comprehensive and pre-emptive, which could do away with the need for surgery and medicine altogether. The complementary base sequences known as genes convey the instructions required to manufacture proteins. The oral cavity is one of the most accessible locations for the therapeutic intervention of gene therapy for several oral tissues. In 1990, the first significant trial of gene therapy was overseen to alleviate adenosine deaminase deficiency. The notion of genetic engineering has become increasingly appealing as a reflection of its benefits over conventional treatment modalities. An example of how this technology may alter dentistry is the implementation of gene therapy for dental and oral ailments. The objective of this article is to examine the effects of gene therapy on the field of dentistry, periodontology and implantology. Furthermore, the therapeutic factors of disease therapy, minimal invasion, and appropriate outcome have indeed been taken into consideration.
Collapse
Affiliation(s)
- Karthika Nair
- Department of Periodontology, A B Shetty Memorial Institute of Dental Sciences, NITTE Deemed to be University, Mangaluru, Karnataka, India
| | - Amitha Ramesh Bhat
- Department of Periodontology, A B Shetty Memorial Institute of Dental Sciences, NITTE Deemed to be University, Mangaluru, Karnataka, India
| |
Collapse
|
4
|
Dutta S, Cohn D. Dually responsive biodegradable drug releasing
3D
printed structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.53137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sujan Dutta
- Casali Center of Applied Chemistry, Institute of Chemistry The Hebrew University of Jerusalem Jerusalem Israel
| | - Daniel Cohn
- Casali Center of Applied Chemistry, Institute of Chemistry The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
5
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
6
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
7
|
Zhang X, Kreuzer LP, Schwaiger DM, Lu M, Mao Z, Cubitt R, Müller-Buschbaum P, Zhong Q. Abnormal fast dehydration and rehydration of light- and thermo-dual-responsive copolymer films triggered by UV radiation. SOFT MATTER 2021; 17:2603-2613. [PMID: 33527960 DOI: 10.1039/d0sm02007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abnormal fast dehydration and rehydration of light- and thermo-dual-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are triggered by UV radiation. Both rapid kinetic processes are probed by in situ neutron reflectivity (NR). The transition temperatures (TTs) of P(OEGMA300-co-PAHA) are 53.0 (ambient conditions) and 52.5 °C (UV radiation, λ = 365 nm). Thin P(OEGMA300-co-PAHA) films show a random distribution of OEGMA300 and PAHA segments. They swell in a D2O vapor atmosphere at 23 °C (below TT) to a swelling ratio d/das-prep of 1.61 ± 0.01 and exhibit a D2O volume fraction φ(D2O) of 39.3 ± 0.5%. After being exposed to UV radiation for only 60 s, d/das-prep and φ(D2O) significantly decrease to 1.00 ± 0.01 and 13.4 ± 0.5%, respectively. Although the UV-induced trans-cis isomerization of the azobenzene in PAHA induces increased hydrophilicity, the configuration change causes a breaking of the intermolecular hydrogen bonds between OEGMA300 and D2O molecules and unexpected film shrinkage. As compared to thermal stimulus-induced dehydration, the present dehydration rate is 100 times faster. Removal of the UV radiation causes immediate rehydration. After 200 s, d/das-prep and φ(D2O) recover to their hydrated states, which is also 30 times faster than the initial hydration. At 60 °C (above TT), thin P(OEGMA300-co-PAHA) films switch to their collapsed state and are insensitive to UV radiation. Thus, the UV-induced fast dehydration and rehydration depend on the existence of hydrogen bonds.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Lucas P Kreuzer
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Dominik M Schwaiger
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Min Lu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany. and Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China. and Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
8
|
Ji C, Deng Y, Yuan H, Wu Y, Yuan W. Hypoxia and temperature dual-stimuli-responsive random copolymers: facile synthesis, self-assembly and controlled release of drug. NEW J CHEM 2020. [DOI: 10.1039/d0nj02114h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The micelles self-assembled from P(NIPAM-co-AA-co-NIA) copolymers presented hypoxia and temperature dual-stimuli-responsive properties and a controlled release of drug was achieved using them.
Collapse
Affiliation(s)
- Chenming Ji
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Yinlu Deng
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Hua Yuan
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Yongzhen Wu
- EYE & ENT Hospital of Fudan University
- Shanghai 200031
- People's Republic of China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| |
Collapse
|
9
|
Muttaqien SE, Nomoto T, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Poly( N-isopropylacrylamide)-Based Polymer-Inducing Isothermal Hydrophilic-to-Hydrophobic Phase Transition via Detachment of Hydrophilic Acid-Labile Moiety. Biomacromolecules 2019; 20:1493-1504. [PMID: 30566830 DOI: 10.1021/acs.biomac.8b01465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The polymerization of N-isopropylacrylamide (NIPAAm) with ionizable monomers results in pH-responsive lower critical solution temperature (LCST) polymer which works in an ionization-dependent manner. However, gradual ionization of the comonomer occurs at a broad pH range due to the electrostatic field generated by the polymers, limiting the extent of LCST shift in response to pH change. Furthermore, excess introduction of comonomer may dull phase transition behavior. Here, we report the development of an ionization-independent LCST polymer that exerts a sharp isothermal hydrophilic-to-hydrophobic phase transition in response to slight pH change. Our polymer has a poly(NIPAAm/2-aminoisoprpylacrylamide (AIPAAm)) (P(NIPAAm/AIPAAm)) backbone that retains the continuous structural similarity of N-alkyl groups for preserving phase transition sensitivity, and primary amine for forming hydrophilic acid-labile 2-propionic-3-methylmaleic (PMM) amide linkage. The PMM moiety improves the polymer's hydrophilicity and drastically increases the LCST. Detachment of the PMM moiety in response to mild acidic condition (pH < 6.8) lowers the LCST to that of original P(NIPAAm/AIPAAm), permitting isothermal pH-responsive phase transition. Utilizing this mechanism, P(NIPAAm/AIPAAm) modified with PMM amide linkage exhibits a sharp hydrophilic-to-hydrophobic transition at a physiological temperature (37 °C) and, strikingly, facilitates interaction with cultured cells. Most importantly, our polymer showed significantly higher accumulation within a solid tumor after systemic injection compared to conventional PNIPAAm, which may be due to its phase transition responding to slightly acidic tumor microenvironment. Thus, this study provides a novel polymer that offers delicate control of LCST and pH-responsiveness suitable for use in even fuzzy biological environments.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan.,Department of Life Science and Technology, School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan.,Center for Pharmaceutical and Medical Technology , Agency for the Assessment and Application of Technology (BPPT), LAPTIAB I, PUSPITEK , Serpong , Banten 15314 , Indonesia
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan.,Department of Life Science and Technology, School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan.,Department of Life Science and Technology, School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan.,Department of Life Science and Technology, School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsutacho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan.,Innovation Center of Nanomedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi, Kawasaki-ku , Kawasaki , Kanagawa 210-0821 , Japan
| |
Collapse
|