1
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Ghadami F, Amani Hamedani M, Rouhi G, Saber-Samandari S, Mehdi Dehghan M, Farzad-Mohajeri S, Mashhadi-Abbas F. The correlation between osseointegration and bonding strength at the bone-implant interface: In-vivo & ex-vivo investigations on hydroxyapatite and hydroxyapatite/titanium coatings. J Biomech 2022; 144:111310. [PMID: 36162145 DOI: 10.1016/j.jbiomech.2022.111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
This study investigated the effects of hydroxyapatite (HA) and hydroxyapatite/titanium (HA/Ti) coatings on osseointegration and bonding strength at the bone-implant interface. The coatings were made using air plasma spray (APS), and three study groups were examined: 1) Uncoated commercial pure titanium (CP-Ti) rods; 2) HA-coated CP-Ti rods, and 3) Composite of 50 %wt HA + 50 %wt Ti coated CP-Ti rods. The rods were implanted into the distal femurs and proximal tibias of fifteen New Zealand white rabbits, and 8 weeks after the implantation, the samples were harvested. The results of pull-out tests showed that the ultimate strength of HA and HA/Ti coatings were significantly greater than the uncoated samples (P < 0.05). Moreover, even though the histological evaluations showed significantly greater osseointegration of HA/Ti composite coatings compared with HA coatings (P < 0.05), nonetheless, the composite of HA/Ti offers no significant increase in the ultimate strength, stiffness, and bonding strength at the bone-implant interface, compared with the HA group (P > 0.05). Thus, in an eight-week study, there was no linear correlation between the osseointegration and the bonding strength at the bone-implant interface. The results of this work may imply that the extent of osseointegration at the bone-implant interface does not necessarily determine the value of the bonding strength at the bone-implant interface. It is speculated that, in a longer-term study, a greater quality of bone formation may occur during osseointegration, between the implant and its adjacent bone, which can lead to a more enhanced bonding strength, compared with the 8-weeks post-surgery follow up.
Collapse
Affiliation(s)
- Farhad Ghadami
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | | | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | | | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Iran
| | - Fatemeh Mashhadi-Abbas
- Department of Oral and Maxillofacial Pathology, Dental School, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
3
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
4
|
Florian F, Guastaldi FPS, Cominotte MA, Pires LC, Guastaldi AC, Cirelli JA. Behavior of rat bone marrow stem cells on titanium surfaces modified by laser-beam and deposition of calcium phosphate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:57. [PMID: 33999340 PMCID: PMC8128786 DOI: 10.1007/s10856-021-06528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the behavior of rat bone marrow stem cells seeded on a Ti-15Mo alloy surface modified by laser-beam irradiation followed by calcium phosphate deposition. MATERIALS AND METHODS A total of four groups were evaluated: polished commercially pure titanium (cpTi): Ti-P; laser irradiation + calcium phosphate deposition on cpTi: Ti-LCP; polished Ti-15Mo alloy: Ti15Mo-P; and laser irradiation + calcium phosphate deposition on Ti-15Mo alloy: Ti15Mo-LCP. Before and after laser irradiation and calcium phosphate deposition on the surfaces, physicochemical and morphological analyses were performed: Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDX). The wettability of the samples was evaluated by contact angle measurement. In addition, the behavior of osteoblast-like cells to these surfaces was evaluated for cell morphology, adhesion, proliferation and viability, evaluation of alkaline phosphatase formation and gene expression of osteogenesis markers. RESULTS Surfaces wet-abrade with grit paper (P) showed oriented groves, while the laser irradiation and calcium phosphate deposition (LCP) produced porosity on both cpTi and Ti15Mo alloy groups with deposits of hydroxyapatite (HA) crystals (SEM). EDX showed no contamination after surface modification in both metal samples. A complete wetting was observed for both LCP groups, whereas P surfaces exhibited high degree of hydrophobicity. There was a statistical difference in the intragroup comparison of proliferation and viability (p < 0.05). The ALP activity showed higher values in the Ti15Mo alloy at 10 days of culture. The gene expression of bone related molecules did not present significant differences at 7 and 14 days among different metals and surface treatments. CONCLUSION Ti15-Mo seems to be an alternative alloy to cpTi for dental implants. Surface treatment by laser irradiation followed by phosphate deposition seems to positively interact with bone cells. CLINICAL RELEVANCE Ti-15Mo alloy surface modified by laser-beam irradiation followed by calcium phosphate deposition may improve and accelerate the osseointegration process of dental implants.
Collapse
Affiliation(s)
- F Florian
- Departament of Morphology - Anatomy, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
| | - F P S Guastaldi
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | - M A Cominotte
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
| | - L C Pires
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil
| | - A C Guastaldi
- Department of Physical Chemistry, Institute of Chemistry of Araraquara, UNESP, Araraquara, SP, Brazil
| | - J A Cirelli
- Department of Diagnosis and Surgery, Araraquara Dental School, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Fardjahromi MA, Ejeian F, Razmjou A, Vesey G, Mukhopadhyay SC, Derakhshan A, Warkiani ME. Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111972. [PMID: 33812600 DOI: 10.1016/j.msec.2021.111972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Biphasic calcium phosphate ceramics (BCPs) have been extensively used as a bone graft in dental clinics to reconstruct lost bone in the jaw and peri-implant hard tissue due to their good bone conduction and similar chemical structure to the teeth and bone. However, BCPs are not inherently osteoinductive and need additional modification and treatment to enhance their osteoinductivity. The present study aims to develop an innovative strategy to improve the osteoinductivity of BCPs using unique features of zeolitic imidazolate framework-8 (ZIF8). In this method, commercial BCPs (Osteon II) were pre-coated with a zeolitic imidazolate framework-8/polydopamine/polyethyleneimine (ZIF8/PDA/PEI) layer to form a uniform and compact thin film of ZIF8 on the surface of BCPs. The surface morphology and chemical structure of ZIF8 modified Osteon II (ZIF8-Osteon) were confirmed using various analytical techniques such as XRD, FTIR, SEM, and EDX. We evaluated the effect of ZIF8 coating on cell attachment, growth, and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). The results revealed that altering the surface chemistry and topography of Osteon II using ZIF8 can effectively promote cell attachment, proliferation, and bone regeneration in both in vitro and in vivo conditions. In conclusion, the method applied in this study is simple, low-cost, and time-efficient and can be used as a versatile approach for improving osteoinductivity and osteoconductivity of other types of alloplastic bone grafts.
Collapse
Affiliation(s)
- Mahsa Asadniaye Fardjahromi
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Graham Vesey
- Regeneus Ltd, Paddington, Sydney, NSW, 2021, Australia
| | | | - Amin Derakhshan
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
6
|
Qiao X, Yang J, Shang Y, Deng S, Yao S, Wang Z, Guo Y, Peng C. Magnesium-doped Nanostructured Titanium Surface Modulates Macrophage-mediated Inflammatory Response for Ameliorative Osseointegration. Int J Nanomedicine 2020; 15:7185-7198. [PMID: 33061375 PMCID: PMC7532891 DOI: 10.2147/ijn.s239550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Background Next generation of coating materials on the surface of implants is designed with a paradigm shift from an inert material to an osteoimmunomodulatory material. Regulating immune response to biomedical implants through influencing the polarization of macrophage has been proven to be an effective strategy. Methods Through anodization and hydrothermal treatment, magnesium ion incorporated TiO2 nanotube array (MgN) coating was fabricated on the surface of titanium and it is hypothesized that it has osteoimmunomodulatory properties. To verify this assumption, systematic studies were carried out by in vitro and in vivo experiments. Results Mg ion release behavior results showed that MgN coating was successfully fabricated on the surface of titanium using anodization and hydrothermal technology. Scanning electron microscopy (SEM) images showed the morphology of the MgN coating on the titanium. The expression of inflammation-related genes (IL-6, IL-1β, TNF-α) was downregulated in MgN group compared with TiO2 nanotube (NT) and blank Ti groups, but anti-inflammatory genes (IL-10 and IL-1ra) were remarkably upregulated in the MgN group. The in vitro and in vivo results demonstrated that MgN coating influenced macrophage polarization toward the M2 phenotype compared with NT and blank-Ti groups, which enhanced osteogenic differentiation of rat bone mesenchymal stem cells rBMSCs in conditioned media (CM) generated by macrophages. Conclusion MgN coating on the titanium endowed the surface with immune-regulatory features and exerted an advantageous effect on osteogenesis, thereby providing excellent strategies for the surface modification of biomedical implants.
Collapse
Affiliation(s)
- Xinrui Qiao
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Yang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuli Shang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Shu Deng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Shiyu Yao
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Wang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Guo
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|