1
|
Yadav S, Bhagat S, Singh S, Maurya PK. Exploring the anti-aging effect of dextran and polyethylene glycol-coated cerium oxide nanoparticles in erythrocytes. Int J Biol Macromol 2024; 282:136700. [PMID: 39427790 DOI: 10.1016/j.ijbiomac.2024.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Oxidative stress generated during aging largely affects erythrocytes. Antioxidative therapies such as polyphenols and flavonoids face limitations like low bioavailability and reduced efficiency. Cerium oxide nanoparticles (CeONPs) can behave as antioxidative enzymes and thus have better efficiency. Additionally, biopolymer coatings such as polyethylene glycol and polysaccharides such as dextran enhance the biocompatibility of these NPs. Therefore, we synthesized and characterized bare, polyethylene glycol, dextran-coated CeONPs and examined their hemocompatibility and protective effect against age-induced oxidative stress in erythrocytes. Erythrocytes were obtained from 5 ml of fresh blood drawn from 52 healthy individuals aged 20-85 years with their consent. CeONPs were found to be protective against age-induced oxidative damage in erythrocytes such as reduced levels of antioxidants and increased levels of oxidative species. Pretreatment with NPs protected the morphology and membrane integrity of erythrocytes. Among the NPs investigated, dextran-coated CeONPs emerged as the most effective, providing a reassuring sign of progress in anti-aging research. Therefore, Dex-CeONPs can be used as potential antioxidant therapeutics against age-induced oxidative stress.
Collapse
Affiliation(s)
- Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India; Department of Vocational Studies & Skill Development, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Stuti Bhagat
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
2
|
Petrova VA, Poshina DN, Golovkin AS, Mishanin AI, Zhuravskii SG, Yukina GY, Naumenko MY, Sukhorukova EG, Savin NA, Erofeev AS, Gofman IV, Ivan'kova EM, Dubashynskaya NV, Yakimansky AV, Skorik YA. Electrospun Composites of Chitosan with Cerium Oxide Nanoparticles for Wound Healing Applications: Characterization and Biocompatibility Evaluation In Vitro and In Vivo. Polymers (Basel) 2024; 16:1787. [PMID: 39000644 PMCID: PMC11243935 DOI: 10.3390/polym16131787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Cerium oxide nanoparticles (CeONPs), as part of tissue regeneration matrices, can protect cells from reactive oxygen species and oxidative stress. In addition, they can influence the properties of the scaffold, including its electrospinnability and mechanical strength. In this work, we prepared electrospun fiber mats from a chitosan and polyethylene oxide blend (CS-PEO) with the addition of ceria nanoparticles (CS-PEO-CeONP). The addition of CeONPs resulted in a smaller fiber diameter and higher swelling compared to CS-PEO fiber mats. CeONP-modified fiber mats also had a higher Young's modulus due to the reinforcing effect of the nanoparticles. Both mats had comparable adhesion and cytocompatibility to mesenchymal stem cells, which had a more rounded morphology on CS-PEO-CeONP compared to elongated cells on the CS-PEO mats. Biocompatibility in an in vivo rat model showed no acute toxicity, no septic or allergic inflammation, and no rough scar tissue formation. The degradation of both mats passed the stage of matrix swelling. CS-PEO-CeONP showed significantly slower biodegradation, with most of the matrix remaining in the tissue after 90 days. The reactive inflammation was aseptic in nature with the involvement of multinucleated foreign-body type giant cells and was significantly reduced by day 90. CeONPs induced the formation of the implant's connective tissue capsule. Thus, the introduction of CeONPs influenced the physicochemical properties and biological activity of CS-PEO nanofiber mats.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Alexey S Golovkin
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia
| | - Alexander I Mishanin
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia
| | - Sergei G Zhuravskii
- Hearing and Speech Laboratory, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Galina Y Yukina
- Laboratory of Pathomorphology, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Maria Y Naumenko
- Hearing and Speech Laboratory, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Elena G Sukhorukova
- Laboratory of Pathomorphology, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Nikita A Savin
- Laboratory of Biophysics, National University of Science and Technology "MISIS", Leninsky 4, 119049 Moscow, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology "MISIS", Leninsky 4, 119049 Moscow, Russia
| | - Iosif V Gofman
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Elena M Ivan'kova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Alexander V Yakimansky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
3
|
Chen S, Wang Y, Bao S, Yao L, Fu X, Yu Y, Lyu H, Pang H, Guo S, Zhang H, Zhou P, Zhou Y. Cerium oxide nanoparticles in wound care: a review of mechanisms and therapeutic applications. Front Bioeng Biotechnol 2024; 12:1404651. [PMID: 38832127 PMCID: PMC11145637 DOI: 10.3389/fbioe.2024.1404651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.
Collapse
Affiliation(s)
- Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Xiao Fu
- Department of Pediatrics, West China Second Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Yang Yu
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Hongbin Lyu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- Department of Psychiatric, The Zigong Affiliated Hospital of Southwest Medical University, Zigong, China
- Zigong Psychiatric Research Center, Zigong, China
| |
Collapse
|
4
|
Sarnatskaya V, Shlapa Y, Kolesnik D, Lykhova O, Klymchuk D, Solopan S, Lyubchyk S, Golovynska I, Qu J, Stepanov Y, Belous A. Bioactivity of cerium dioxide nanoparticles as a function of size and surface features. Biomater Sci 2024; 12:2689-2704. [PMID: 38597367 DOI: 10.1039/d3bm01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Nano-dispersed cerium dioxide is promising for use in medicine due to its unique physicochemical properties, including low toxicity, the safety of in vivo usage, active participation in different redox processes occurring in living cells, and its regenerative potential, manifested in the ability of CeO2 to participate repeatedly in redox reactions. In this work, we examined the biological activity of cerium dioxide nanoparticles (CeO2 NPs) synthesized by precipitation in mixed water/alcohol solutions at a constant pH of 9. This synthesis method allowed controlling the size and Ce3+/Ce4+ proportion on the surface of NPs, changing the synthesis conditions and obtaining highly stable suspensions of "naked" CeO2 NPs. Changes in the surface properties upon contact of CeO2 NPs with protein-rich media, e.g., bovine serum albumin and DMEM cell culture medium supplemented with 10% fetal bovine serum, the characteristics of nanoparticle uptake by mouse aortic endothelial cells and the antioxidant activity of the nanoparticles of different sizes were investigated by various state-of-the-art analytical methods.
Collapse
Affiliation(s)
- Veronika Sarnatskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Yuliia Shlapa
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina ave., Kyiv, 03142, Ukraine.
| | - Denis Kolesnik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Olexandra Lykhova
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Dmytro Klymchuk
- M.G. Kholodny Institute of Botany of the NAS of Ukraine, 2, Tereshchenkivska str., Kyiv, 01601, Ukraine
| | - Serhii Solopan
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Svitlana Lyubchyk
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
- Quinta de Torre, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Iuliia Golovynska
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Junle Qu
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
- Quinta de Torre, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Yurii Stepanov
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Anatolii Belous
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina ave., Kyiv, 03142, Ukraine.
| |
Collapse
|
5
|
Jiao Y, Zhang X, Yang H, Ma H, Zou J. Mesoporous tantalum oxide nanomaterials induced cardiovascular endothelial cell apoptosis via mitochondrial-endoplasmic reticulum stress apoptotic pathway. Drug Deliv 2023; 30:108-120. [PMID: 36533874 PMCID: PMC9788694 DOI: 10.1080/10717544.2022.2147251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Along with its wide range of potential applications, human exposure to mesoporous tantalum oxide nanomaterials (PEG@mTa2O5) has substantially risen. Accumulative toxic investigations have shown the PEG@mTa2O5 intake and cardiovascular diseases (CVD). Endothelial cell death is crucial in the onset and development of atherosclerosis. Still, the molecular mechanism connecting PEG@mTa2O5 and endothelium apoptosis remains unclear. Herein, we studied the absorption and toxic action of mesoporous tantalum oxide (mTa2O5) nanomaterials with polyethylene glycol (PEG) utilizing human cardio microvascular endothelial cells (HCMECs). We also showed that PEG@mTa2O5 promoted apoptosis in endothelial cells using flow cytometry and AO-EB staining. In conjunction with the ultrastructure modifications, PEG@mTa2O5 prompted mitochondrial ROS production, cytosolic Ca2+ overload, ΔΨm collapse, and ER stress verified by elevated ER-Tracker staining, upregulated XBP1 and GRP78/BiP splicing. Remarkably, the systemic toxicity and blood compatibility profile of PEG@mTa2O5 can greatly improve successive therapeutic outcomes of NMs while reducing their adverse side effects. Overall, our findings suggested that PEG@mTa2O5-induced endothelium apoptosis was partially mediated by the activation of the endoplasmic reticulum stress-mitochondrial cascade.
Collapse
Affiliation(s)
- Yuanyong Jiao
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiwei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Hongyu Yang
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Hao Ma
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Junjie Zou
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China,CONTACT Junjie Zou Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Guangzhou Road 300, Gulou District, Nanjing210029, China
| |
Collapse
|
6
|
Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Indexed: 05/11/2023]
Abstract
Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.
Collapse
Affiliation(s)
- Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000, P. R. China
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80125, Naples, Italy
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, 999077, P. R. China
| | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B.G. Nagara, Mandya District, Mandya, Karnataka, 571448, India
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Serena Del Turco
- National Research Council, Institute of Clinical Physiology, 56124, Pisa, Italy
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, P. R. China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| |
Collapse
|
7
|
Mehrizi TZ, Ardestani MS, Kafiabad SA. A Review of the Use of Metallic Nanoparticles as a Novel Approach for Overcoming the Stability Challenges of Blood Products: A Narrative Review from 2011-2021. Curr Drug Deliv 2023; 20:261-280. [PMID: 35570560 DOI: 10.2174/1567201819666220513092020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE To obtain safe and qualified blood products (e.g., platelets, plasma, and red blood cells), various limitations such as limited shelf life (especially for platelets) and stability must be addressed. In this review study, the most commonly used metal nanomaterials (e.g., gold, silver, iron, and magnetic) reported in the literature from 2011 to 2021 were discussed owing to their unique properties, which provide exciting approaches to overcome these limitations and improve the stability, safety, and quality of blood products. Novelty: This study reviews for the first time the results of studies (from 2011 to 2021) that consider the effects of various metallic nanoparticles on the different blood products. RESULTS The results of this review study showed that some metallic nanoparticles are effective in improving the stability of plasma proteins. For this purpose, modified Fe3O4 magnetic nanoparticles and citrate-AuNPs protect albumin products against stressful situations. Also, SiO2 microspheres and silicacoated magnetite nanoparticles are highly capable of improving IgG stability. ZnO nanoparticles also reduced thrombin production, and protein-coated GMNP nanoparticles prevented unwanted leakage of factor VIII through blood vessels. Furthermore, the stability and longevity of erythrocytes can be improved by AuNP nanoparticles and Zr-based organic nanoparticles. In addition, platelet storage time can be improved using PEGylated Au and functionalized iron oxide nanoparticles. SUGGESTION According to the results of this study, it is suggested that further research should be conducted on metal nanoparticles as the most promising candidates to prepare metal nanoparticles with improved properties to increase the stability of various blood products.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
8
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
9
|
Ablat N, Ablimit M, Abudoukadier A, Kadeer B, Maihemuti A, Bakewaiyi A, Tuerxun A, Aihemaiti A. Liver protection and hemostatic effects of medicinal plant Arnebia euchroma (Royle) I.M.Johnst extract in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115739. [PMID: 36126784 DOI: 10.1016/j.jep.2022.115739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arnebia euchroma (Royle) I.M.Johnst. (AE) is a Chinese medicinal herb that is traditionally used to treat various circulatory diseases. It exhibits certain effects, such as the promotion of blood circulation and cooling, rash clearance, and detoxification. AIM OF THE STUDY This study was designed to explore the hepatoprotective and hemostatic effects of the ethyl acetate extract of AE in rats with carbon tetrachloride (CCl4)-induced liver injury. MATERIALS AND METHODS Wistar rats were treated via oral gavage with different doses of the ethyl acetate extract of AE (3.5, 7, or 14 g kg-1·day-1) for 14 consecutive days, following which hemostatic and liver function tests were conducted. For the hemostatic tests, the platelet count, blood platelet aggregation, blood platelet adhesion to fibrinogen, platelet factor 4 (PF-4) secretion from blood platelets, prothrombin time (PT), activated partial thromboplastin time (aPTT), thrombin time (TT), and fibrinogen levels were measured at the end of the treatment period. For the liver function tests, 0.25 mL/200 g (1.25 mL kg-1·day-1) of olive oil was injected into the abdominal cavity of the control rats, whereas 15% CCl4 plus olive oil (prescription: 7.5 mL CCl4 + 42.5 olive oil) was injected into that of the treated rats at 1 h after extract administration on day 6, 13, and 20. Additionally, food and water were withheld from all the animals. On the following day, the rats were anesthetized and their albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), gamma-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), reactive oxygen species (ROS), methane dicarboxylic aldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were measured. Glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx) levels among the groups were determined using a one-way analysis of variance. RESULTS The platelet count and blood platelet aggregation, blood platelet adhesion to fibrinogen and PF-4 secretion levels were significantly increased in the (3.5 g kg-1 day-1) AE group as compared to those in the control group (all p < 0.001; for the 7 and 14 g kg-1 day-1 AE groups, all p > 0.05, respectively). Although the PT and aPTT were not affected by the AE extract (all p > 0.05), the TT was reduced and the FIB levels were significantly increased in all AE groups (p < 0.05). Liver function tests showed that CCl4 caused significant liver damage, thereby decreasing the albumin, SOD, CAT, GSH, GST, GR, and GPx levels, while increasing the AST, ALT, ALP, SGOT, SGPT, GGT, LDH, ROS, and MDA levels (all p < 0.001). By contrast, treatment with the different doses of AE extract reversed the CCl4 effects on all these parameters. Compared with the levels in the CCl4 group, the GSH and GR levels in the three AE groups (3.5, 7, and 14 g kg-1·day-1) were significantly higher (p < 0.05, p < 0.01, and p < 0.001, respectively), whereas the differences in the other parameters for these three groups were all at the significance levels of p < 0.05, p < 0.05, and p < 0.01, respectively. CONCLUSIONS AE extracts administered orally exhibited hepatoprotective activity by affecting platelet production and blood coagulation and ameliorating liver function-damaging modifications. Specifically, a dosage of 3.5 g kg-1·day-1 resulted in the most optimal effects.
Collapse
Affiliation(s)
- Nuramatjan Ablat
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, China.
| | - Mihray Ablimit
- Xinjiang Uygur Autonomous Region Shache County Dunbag Township Health Center, 844700, China.
| | - Abudoureheman Abudoukadier
- Department of Cardiology, Urumqi City Friendship Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830049, China.
| | - Buhaiqiemu Kadeer
- Department of Gynecology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| | - Abulaitijiang Maihemuti
- Department of Laboratory, Uyghur Medicine Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830000, China.
| | - Alibati Bakewaiyi
- Department of Laboratory, Uyghur Medicine Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830000, China.
| | - Atike Tuerxun
- Department of Pharmacy, Uyghur Medicine Hospital of Hetian Region, Hetian, 848000, China.
| | - Adilijiang Aihemaiti
- Department of Laboratory, Uyghur Medicine Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830000, China.
| |
Collapse
|
10
|
Li J, Wang C, Yue L, Chen F, Cao X, Wang Z. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113955. [PMID: 35961199 DOI: 10.1016/j.ecoenv.2022.113955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Given the rapid development of nanotechnology, it is crucial to understand the effects of nanoparticles on living organisms. However, it is laborious to perform toxicological tests on a case-by-case basis. Quantitative structure-activity relationship (QSAR) is an effective computational technique because it saves time, costs, and animal sacrifice. Therefore, this review presents general procedures for the construction and application of nano-QSAR models of metal-based and metal-oxide nanoparticles (MBNPs and MONPs). We also provide an overview of available databases and common algorithms. The molecular descriptors and their roles in the toxicological interpretation of MBNPs and MONPs are systematically reviewed and the future of nano-QSAR is discussed. Finally, we address the growing demand for novel nano-specific descriptors, new computational strategies to address the data shortage, in situ data for regulatory concerns, a better understanding of the physicochemical properties of NPs with bioactivity, and, most importantly, the design of nano-QSAR for real-life environmental predictions rather than laboratory simulations.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Del Turco S, Cappello V, Tapeinos C, Moscardini A, Sabatino L, Battaglini M, Melandro F, Torri F, Martinelli C, Babboni S, Silvestrini B, Morganti R, Gemmi M, De Simone P, Martins PN, Crocetti L, Peris A, Campani D, Basta G, Ciofani G, Ghinolfi D. Cerium oxide nanoparticles administration during machine perfusion of discarded human livers: A pilot study. Liver Transpl 2022; 28:1173-1185. [PMID: 35100468 DOI: 10.1002/lt.26421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 01/13/2023]
Abstract
The combined approach of ex situ normothermic machine perfusion (NMP) and nanotechnology represents a strategy to mitigate ischemia/reperfusion injury in liver transplantation (LT). We evaluated the uptake, distribution, and efficacy of antioxidant cerium oxide nanoparticles (nanoceria) during normothermic perfusion of discarded human livers. A total of 9 discarded human liver grafts were randomized in 2 groups and underwent 4 h of NMP: 5 grafts were treated with nanoceria conjugated with albumin (Alb-NC; 50 µg/ml) and compared with 4 untreated grafts. The intracellular uptake of nanoceria was analyzed by electron microscopy (EM) and inductively coupled plasma-mass spectrometry (ICP-MS). The antioxidant activity of Alb-NC was assayed in liver biopsies by glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) assay, telomere length, and 4977-bp common mitochondrial DNA deletion (mtDNA4977 deletion). The cytokine profile was evaluated in perfusate samples. EM and ICP-MS confirmed Alb-NC internalization, rescue of mitochondrial phenotype, decrease of lipid droplet peroxidation, and lipofuscin granules in the treated grafts. Alb-NC exerted an antioxidant activity by increasing GSH levels (percentage change: +94% ± 25%; p = 0.01), SOD (+17% ± 4%; p = 0.02), and CAT activity (51% ± 23%; p = 0.03), reducing the occurrence of mtDNA4977 deletion (-67.2% ± 11%; p = 0.03), but did not affect cytokine release. Alb-NC during ex situ perfusion decreased oxidative stress, upregulating graft antioxidant defense. They could be a tool to improve quality grafts during NMP and represent an antioxidant strategy aimed at protecting the graft against reperfusion injury during LT.
Collapse
Affiliation(s)
- Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Valentina Cappello
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Aldo Moscardini
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, Pisa, Italy
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Beatrice Silvestrini
- Division of Interventional Radiology, University of Pisa Medical School Hospital, Pisa, Italy
| | | | - Mauro Gemmi
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paulo N Martins
- Department of Surgery, Division of Transplantation, University of Massachusetts, Worcester, Massachusetts, USA
| | - Laura Crocetti
- Division of Interventional Radiology, University of Pisa Medical School Hospital, Pisa, Italy
| | - Adriano Peris
- Regional Transplant Authority of Tuscany, Florence, Italy
| | - Daniela Campani
- Division of Pathology, University of Pisa Medical School Hospital, Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| |
Collapse
|
12
|
Cerium oxide decorated 5-fluorouracil loaded chitosan nanoparticles for treatment of hepatocellular carcinoma. Int J Biol Macromol 2022; 216:52-64. [PMID: 35750101 DOI: 10.1016/j.ijbiomac.2022.06.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in the mammalian system in both normal and pathological conditions. Hence, this work prepared and characterized the ROS responsive cerium oxide nanoparticles (CeO2 NPs) decorated 5-fluorouracil (5FU) loaded chitosan (CS) nanoparticles (CS-5FU NPs) for enhanced anticancer activity in hepatocellular carcinoma (HepG2 cells). CeO2 NPs decorated CS-5FU NPs were found to be spherical in shape and black dense aggregated particles sized 200 nm. The functional properties and cubic crystalline structure of CeO2 NPs were studied by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis, respectively. Further, CS-5FU-CeO2 NPs attenuated the 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH) induced ROS formation in mouse embryonic fibroblasts (NIH3T3 cells) while enhancing apoptotic cell death in HepG2 cells by controlled delivery of 5FU. Furthermore, CS-5FU-CeO2 NPs have not exhibited toxicity to red blood cells (RBCs) and chick chorioallantoic membrane (CAM). Hence, this work concluded that CeO2 NPs decorated CS-5FU NPs synergistically enhanced anticancer activity in HepG2 cells through the regulation of ROS.
Collapse
|
13
|
Kailashiya J, Dash D. Effects of Nanoceria on Human Platelet Functions and Blood Coagulation. Int J Nanomedicine 2022; 17:273-284. [PMID: 35087272 PMCID: PMC8789318 DOI: 10.2147/ijn.s332909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jyotsna Kailashiya
- Centre for Advanced Research on Platelet Signalling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signalling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Correspondence: Debabrata Dash, Centre for Advanced Research on Platelet Signalling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India, Email
| |
Collapse
|
14
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
15
|
Yang X, You J, Wei Y, Li H, Gao L, Guo Q, Huang Y, Gong C, Yi C. Emerging nanomaterials applied for tackling the COVID-19 cytokine storm. J Mater Chem B 2021; 9:8185-8201. [PMID: 34528037 DOI: 10.1039/d1tb01446c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the global outbreak of coronavirus disease 2019 (COVID-19), a hyperinflammatory state called the cytokine storm was recognized as a major contributor to multiple organ failure and mortality. However, to date, the diagnosis and treatment of the cytokine storm remain major challenges for the clinical prognosis of COVID-19. In this review, we outline various nanomaterial-based strategies for preventing the COVID-19 cytokine storm. We highlight the contribution of nanomaterials to directly inhibit cytokine release. We then discuss how nanomaterials can be used to deliver anti-inflammatory drugs to calm the cytokine storm. Nanomaterials also play crucial roles in diagnostics. Nanomaterial-based biosensors with improved sensitivity and specificity can be used to detect cytokines. In summary, emerging nanomaterials offer platforms and tools for the detection and treatment of the COVID-19 cytokine storm and future pandemic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qing Guo
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
17
|
Popov AL, Abakumov MA, Savintseva IV, Ermakov AM, Popova NR, Ivanova OS, Kolmanovich DD, Baranchikov AE, Ivanov VK. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T 1 relaxivity and selective cytotoxicity to cancer cells. J Mater Chem B 2021; 9:6586-6599. [PMID: 34369536 DOI: 10.1039/d1tb01147b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern are possible gadolinium deposition in the brain and the development of systemic nephrogenic fibrosis after repeated use of MRI contrasts. Thus, there is an urgent need to develop a new generation of MRI contrasts that are safe and that have high selectivity in tissue accumulation with improved local contrast. Here, we report on a new type of theranostic MRI contrast, namely dextran stabilised, gadolinium doped cerium dioxide nanoparticles. These ultra-small (4-6 nm) Ce0.9Gd0.1O1.95 nanoparticles have been shown to possess excellent colloidal stability and high r1-relaxivity (3.6 mM-1 s-1). They are effectively internalised by human normal and cancer cells and demonstrate dose-dependent selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- A L Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky av., 31, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ghinolfi D, Melandro F, Torri F, Martinelli C, Cappello V, Babboni S, Silvestrini B, De Simone P, Basta G, Del Turco S. Extended criteria grafts and emerging therapeutics strategy in liver transplantation. The unstable balance between damage and repair. Transplant Rev (Orlando) 2021; 35:100639. [PMID: 34303259 DOI: 10.1016/j.trre.2021.100639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Due to increasing demand for donor organs, "extended criteria" donors are increasingly considered for liver transplantation, including elderly donors and donors after cardiac death. The grafts of this subgroup of donors share a major risk to develop significant features of ischemia reperfusion injury, that may eventually lead to graft failure. Ex-situ machine perfusion technology has gained much interest in liver transplantation, because represents both a useful tool for improving graft quality before transplantation and a platform for the delivery of therapeutics directly to the organ. In this review, we survey ongoing clinical evidences supporting the use of elderly and DCD donors in liver transplantation, and the underlying mechanistic aspects of liver aging and ischemia reperfusion injury that influence graft quality and transplant outcome. Finally, we highlight evidences in the field of new therapeutics to test in MP in the context of recent findings of basic and translational research.
Collapse
Affiliation(s)
- Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy.
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi 1, 56124 Pisa, Italy
| | - Beatrice Silvestrini
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, 56122 Pisa, Italy.
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi 1, 56124 Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
19
|
Goujon G, Baldim V, Roques C, Bia N, Seguin J, Palmier B, Graillot A, Loubat C, Mignet N, Margaill I, Berret J, Beray‐Berthat V. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Adv Healthc Mater 2021; 10:e2100059. [PMID: 33890419 DOI: 10.1002/adhm.202100059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Oxidative stress, which is one of the main harmful mechanisms of pathologies including ischemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants are tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, the objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity. This study reports the synthesis and characterization of functional polymers and their impact on the enzyme-like catalytic activity of CNPs. To study the toxicity and the antioxidant properties of CNPs for stroke and particularly endothelial damages, in vitro studies are conducted on a cerebral endothelial cell line (bEnd.3). Despite their internalization in bEnd.3 cells, coated CNPs are devoid of cytotoxicity. Microscopy studies report an intracellular localization of CNPs, more precisely in endosomes. All CNPs reduces glutamate-induced intracellular production of reactive oxygen species (ROS) in endothelial cells but one CNP significantly reduces both the production of mitochondrial superoxide anion and DNA oxidation. In vivo studies report a lack of toxicity in mice. This study therefore describes and identifies biocompatible CNPs with interesting antioxidant properties for ischemic stroke and related pathologies.
Collapse
Affiliation(s)
- Geoffroy Goujon
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Victor Baldim
- Université de Paris CNRS UMR 7057 Matière et systèmes complexes Paris 75013 France
| | - Caroline Roques
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Nicolas Bia
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Johanne Seguin
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Bruno Palmier
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Alain Graillot
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Cédric Loubat
- Specific Polymers ZAC Via Domitia 150 Avenue des Cocardières Castries F‐34160 France
| | - Nathalie Mignet
- Université de Paris UTCBS (Unité de Technologies Chimiques et Biologiques pour la Santé) CNRS UMR8258 Inserm U1267 Inserm 4 avenue de l'observatoire Paris F‐75006 France
| | - Isabelle Margaill
- Université de Paris Inserm UMR_S1140 Innovative Therapies in Haemostasis Paris 75270 France
| | - Jean‐François Berret
- Université de Paris CNRS UMR 7057 Matière et systèmes complexes Paris 75013 France
| | - Virginie Beray‐Berthat
- Université de Paris CNRS ERL 3649 “Pharmacologie et thérapies des addictions” Inserm UMR‐S 1124 T3S “Environmental Toxicity, Therapeutic Targets Cellular Signaling an biomarkers” 45 rue des Saints Pères Paris F‐75006 France
| |
Collapse
|
20
|
Hartati YW, Topkaya SN, Gaffar S, Bahti HH, Cetin AE. Synthesis and characterization of nanoceria for electrochemical sensing applications. RSC Adv 2021; 11:16216-16235. [PMID: 35479153 PMCID: PMC9031634 DOI: 10.1039/d1ra00637a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Nanoceria (cerium oxide nanoparticles: CeO2-NPs) has received significant attention due to its biocompatibility, good conductivity, and the ability to transfer oxygen. Nanoceria has been widely used to develop electrochemical sensors and biosensors as it could increase response time, sensitivity, and stability of the sensor. In this review, we discussed synthesis methods, and the recent applications employing CeO2-NPs for electrochemical detection of various analytes reported in the most recent four years.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University Turkey
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Husein H Bahti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center Izmir Turkey
| |
Collapse
|
21
|
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol 2020; 41:683-700. [DOI: 10.1002/jat.4121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
22
|
Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy. NANOMATERIALS 2020; 10:nano10112104. [PMID: 33114052 PMCID: PMC7690690 DOI: 10.3390/nano10112104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The lack of efficient targeting strategies poses significant limitations on the effectiveness of chemotherapeutic treatments. This issue also affects drug-loaded nanocarriers, reducing nanoparticles cancer cell uptake. We report on the fabrication and in vitro characterization of doxorubicin-loaded magnetic liposomes for localized treatment of liver malignancies. Colloidal stability, superparamagnetic behavior and efficient drug loading of our formulation were demonstrated. The application of an external magnetic field guaranteed enhanced nanocarriers cell uptake under cell medium flow in correspondence of a specific area, as we reported through in vitro investigation. A numerical model was used to validate experimental data of magnetic targeting, proving the possibility of accurately describing the targeting strategy and predict liposomes accumulation under different environmental conditions. Finally, in vitro studies on HepG2 cancer cells confirmed the cytotoxicity of drug-loaded magnetic liposomes, with cell viability reduction of about 50% and 80% after 24 h and 72 h of incubation, respectively. Conversely, plain nanocarriers showed no anti-proliferative effects, confirming the formulation safety. Overall, these results demonstrated significant targeting efficiency and anticancer activity of our nanocarriers and superparamagnetic nanoparticles entrapment could envision the theranostic potential of the formulation. The proposed magnetic targeting study could represent a valid tool for pre-clinical investigation regarding the effectiveness of magnetic drug targeting.
Collapse
|
23
|
Shair Mohammad I, Chaurasiya B, Yang X, Lin C, Rong H, He W. Homotype-Targeted Biogenic Nanoparticles to Kill Multidrug-Resistant Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100950. [PMID: 33050126 PMCID: PMC7600481 DOI: 10.3390/pharmaceutics12100950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
“Off-targeting” and receptor density expressed at the target sites always compromise the efficacy of the nanoparticle-based drug delivery systems. In this study, we isolated different cell membranes and constructed cell membrane-cloaked biogenic nanoparticles for co-delivery of antitumor paclitaxel (PTX) and multidrug resistance (MDR)-modulator disulfiram (DSF). Consequently, MDR cancer cell membrane (A549/T)-coated hybrid nanoparticles (A549/T CM-HNPs) selectively recognized the source cells and increased the uptake by ninefold via the homotypic binding mechanism. Moreover, the A549/T CM-HNPs sensitized MDR cells to PTX by suppressing P-glycoprotein (P-gp) activity by 3.2-fold and induced effective apoptosis (70%) in homologous A549/T cells. Cell-membrane coating based on the “homotypic binding” is promising in terms of promoting the accumulation of chemotherapeutics in MDR cells and killing them.
Collapse
Affiliation(s)
- Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China; (X.Y.); (C.L.); (H.R.)
| | - Birendra Chaurasiya
- Department of Pediatrics, Division of Critical Care, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Xuan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China; (X.Y.); (C.L.); (H.R.)
| | - Chuchu Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China; (X.Y.); (C.L.); (H.R.)
| | - Hehui Rong
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China; (X.Y.); (C.L.); (H.R.)
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence:
| |
Collapse
|
24
|
Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020; 25:E4559. [PMID: 33036163 PMCID: PMC7583868 DOI: 10.3390/molecules25194559] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several biocompatible materials have been applied for managing soft tissue lesions; cerium oxide nanoparticles (CNPs, or nanoceria) are among the most promising candidates due to their outstanding properties, including antioxidant, anti-inflammatory, antibacterial, and angiogenic activities. Much attention should be paid to the physical properties of nanoceria, since most of its biological characteristics are directly determined by some of these relevant parameters, including the particle size and shape. Nanoceria, either in bare or functionalized forms, showed the excellent capability of accelerating the healing process of both acute and chronic wounds. The skin, heart, nervous system, and ophthalmic tissues are the main targets of nanoceria-based therapies, and the other soft tissues may also be evaluated in upcoming experimental studies. For the repair and regeneration of soft tissue damage and defects, nanoceria-incorporated film, hydrogel, and nanofibrous scaffolds have been proven to be highly suitable replacements with satisfactory outcomes. Still, some concerns have remained regarding the long-term effects of nanoceria administration for human tissues and organs, such as its clearance from the vital organs. Moreover, looking at the future, it seems necessary to design and develop three-dimensional (3D) printed scaffolds containing nanoceria for possible use in the concepts of personalized medicine.
Collapse
Affiliation(s)
- Hossein Sadidi
- General Surgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ali Ahmadabadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Seyed Javad Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine,, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Morvarid Vatanpour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| |
Collapse
|
25
|
Pisani A, Pompa PP, Bardi G. Potential Applications of Nanomaterials to Quench the Cytokine Storm in Coronavirus Disease 19. Front Bioeng Biotechnol 2020; 8:906. [PMID: 32974295 PMCID: PMC7466734 DOI: 10.3389/fbioe.2020.00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
26
|
Moscardini A, Di Pietro S, Signore G, Parlanti P, Santi M, Gemmi M, Cappello V. Uranium-free X solution: a new generation contrast agent for biological samples ultrastructure. Sci Rep 2020; 10:11540. [PMID: 32665608 PMCID: PMC7360580 DOI: 10.1038/s41598-020-68405-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 11/15/2022] Open
Abstract
Biological samples are mainly composed of elements with a low atomic number which show a relatively low electron scattering power. For Transmission Electron Microscopy analysis, biological samples are generally embedded in resins, which allow thin sectioning of the specimen. Embedding resins are also composed by light atoms, thus the contrast difference between the biological sample and the surrounding resin is minimal. Due to that reason in the last decades, several staining solutions and approaches, performed with heavy metal salts, have been developed with the purpose of enhancing both the intrinsic sample contrast and the differences between the sample and resin. The best staining was achieved with the uranyl acetate (UA) solution, which has been the election method for the study of morphology in biological samples. More recently several alternatives for UA have been proposed to get rid of its radiogenic issues, but to date none of these solutions has achieved efficiencies comparable to UA. In this work, we propose a different staining solution (X Solution or X SOL), characterized by lanthanide polyoxometalates (LnPOMs) as heavy atoms source, which could be used alternatively to UA in negative staining (NS), in en bloc staining, and post sectioning staining (PSS) of biological samples. Furthermore, we show an extensive chemical characterization of the LnPOM species present in the solution and the detailed work for its final formulation, which brought remarkable results, and even better performances than UA.
Collapse
Affiliation(s)
- Aldo Moscardini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia Università degli Studi di Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Giovanni Signore
- Fondazione Pisana per la Scienza, Via F.Giovannini 13, 56017, San Giuliano Terme, PI, Italy.
| | - Paola Parlanti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Melissa Santi
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
27
|
Zavvari F, Nahavandi A, Shahbazi A. Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. J Chem Neuroanat 2020; 106:101799. [DOI: 10.1016/j.jchemneu.2020.101799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
|
28
|
Targeted Dendrimer-Coated Magnetic Nanoparticles for Selective Delivery of Therapeutics in Living Cells. Molecules 2020; 25:molecules25092252. [PMID: 32397665 PMCID: PMC7249066 DOI: 10.3390/molecules25092252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are widely used as theranostic agents for the treatment of various pathologies, including cancer. Among all, dendrimers-based nanoparticles represent a valid approach for drugs delivery, thanks to their controllable size and surface properties. Indeed, dendrimers can be easily loaded with different payloads and functionalized with targeting agents. Moreover, they can be used in combination with other materials such as metal nanoparticles for combinatorial therapies. Here, we present the formulation of an innovative nanostructured hybrid system composed by a metallic core and a dendrimers-based coating that is able to deliver doxorubicin specifically to cancer cells through a targeting agent. Its dual nature allows us to transport nanoparticles to our site of interest through the magnetic field and specifically increase internalization by exploiting the T7 targeting peptide. Our system can release the drug in a controlled pH-dependent way, causing more than 50% of cell death in a pancreatic cancer cell line. Finally, we show how the system was internalized inside cancer cells, highlighting a peculiar disassembly of the nanostructure at the cell surface. Indeed, only the dendrimeric portion is internalized, while the metal core remains outside. Thanks to these features, our nanosystem can be exploited for a multistage magnetic vector.
Collapse
|