1
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
2
|
Blašković M, Butorac Prpić I, Aslan S, Gabrić D, Blašković D, Cvijanović Peloza O, Čandrlić M, Perić Kačarević Ž. Magnesium Membrane Shield Technique for Alveolar Ridge Preservation: Step-by-Step Representative Case Report of Buccal Bone Wall Dehiscence with Clinical and Histological Evaluations. Biomedicines 2024; 12:2537. [PMID: 39595103 PMCID: PMC11591876 DOI: 10.3390/biomedicines12112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite the increased use of new resorbable magnesium membranes, there are no reported cases or studies on the use of resorbable magnesium membranes in combination with bone grafts for alveolar ridge preservation (ARP) in cases with severe buccal bone wall dehiscence. This case report aimed to evaluate the effectiveness of the magnesium membrane shield technique in conjunction with bone grafting for ARP, assessing both clinical outcomes and histological bone regeneration. METHODS A 44-year-old female patient presented with a vertical fracture on tooth 24 (FDI Notation System) accompanied with complete destruction of the buccal bone wall. The treatment plan included tooth extraction, ARP using a combination of anorganic bovine bone and autologous bone grafting, and the application of a magnesium membrane as a shield to the pre-existing buccal wall. Six months post-procedure, a bone biopsy was taken from the implant site using a trephine bur. RESULTS Clinical and radiological evaluations six months after the procedure demonstrated sufficient bone volume for implant placement. Additionally, in the next three months, soft tissue conditioning with a provisional crown resulted in an aesthetically and functionally satisfactory outcome. Histological analysis of the bone biopsy revealed well-formed new bone in direct contact with residual biomaterial, with no signs of inflammation. Osteocytes were clearly visible within the newly formed bone matrix, indicating successful bone maturation. Active osteoblasts were observed along the bone-biomaterial interface, suggesting ongoing bone remodeling and integration. Additionally, histomorphometric evaluation revealed 47% newly formed bone, 32% soft tissue, and 19% residual biomaterial. CONCLUSIONS This case demonstrates the potential of the magnesium shield technique as an ARP technique in cases with severe buccal wall dehiscence. The technique yielded satisfactory clinical outcomes and promoted successful bone regeneration, as confirmed by histological analysis.
Collapse
Affiliation(s)
- Marko Blašković
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia; (M.B.); (D.B.)
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešmirova ulica 40/42, 51000 Rijeka, Croatia
| | - Ivana Butorac Prpić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Serhat Aslan
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy;
| | - Dragana Gabrić
- Department of Oral Surgery, School of Dental Medicine University of Zagreb, 10000 Zagreb, Croatia;
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Dorotea Blašković
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia; (M.B.); (D.B.)
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| | - Marija Čandrlić
- Department of Integrative Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
| |
Collapse
|
3
|
Tan X, Wang Z, Yang X, Yu P, Sun M, Zhao Y, Yu H. Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII. Regen Biomater 2023; 10:rbad066. [PMID: 37489146 PMCID: PMC10363026 DOI: 10.1093/rb/rbad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Glass-fibre-reinforced polyetherketoneketone (PEKK-GF) shows great potential for application as a dental implant restoration material; however, its surface bioinertness and poor antibacterial properties limit its integration with peri-implant soft tissue, which is critical in the long-term success of implant restoration. Herein, functional magnesium (Mg) and silver (Ag) ions were introduced into PEKK-GF by plasma immersion ion implantation (PIII). Surface characterization confirmed that the surface morphology of PEKK-GF was not visibly affected by PIII treatment. Further tests revealed that PIII changed the wettability and electrochemical environment of the PEKK-GF surface and enabled the release of Mg2+ and Ag+ modulated by Giavanni effect. In vitro experiments showed that Mg/Ag PIII-treated PEKK-GF promoted the proliferation and adhesion of human gingival fibroblasts and upregulated the expression of adhesion-related genes and proteins. In addition, the treated samples inhibited the metabolic viability and adhesion of Streptococcus mutans and Porphyromonas gingivalis on their surfaces, distorting bacterial morphology. Mg/Ag PIII surface treatment improved the soft tissue integration and antibacterial activities of PEKK-GF, which will further support and broaden its adoption in dentistry.
Collapse
Affiliation(s)
| | | | - Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Yu
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Manlin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Correspondence address. Tel: +86 0 18980685999, E-mail:
| |
Collapse
|
4
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Wang W, Song Y, Tian Y, Chen B, Liang Y, Liang Y, Li C, Li Y. TCPP/MgO-loaded PLGA microspheres combining photodynamic antibacterial therapy with PBM-assisted fibroblast activation to treat periodontitis. Biomater Sci 2023; 11:2828-2844. [PMID: 36857622 DOI: 10.1039/d2bm01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Bacteria eradication and subsequent periodontal tissue reconstruction is the primary task for periodontitis treatment. Commonly used antibiotic therapy suffers from antibiotic resistance. Meanwhile, promoting fibroblast activity is crucial for re-establishing a damaged periodontal structure. In addition to the fibroblast activation property of Mg2+, photobiomodulation (PBM) has recently attracted increasing attention in wound healing. Using the same 635 nm laser resource, PBM could simultaneously work with antibacterial photodynamic therapy (aPDT) to achieve antibacterial function and fibroblast activation effect. Herein, multifunctional microspheres were designed by employing poly (lactic-co-glycolic acid) (PLGA) microspheres to load tetrakis (4-carboxyphenyl) porphyrin (TCPP) and magnesium oxide (MgO) nanoparticles, named as PMT, with sustained Mg2+ release for 20 days. PMT achieved excellent antibacterial photodynamic effect for periodontal pathogens F. nucleatum and P. gingivalis by generating reactive oxygen species, which increases cell membrane permeability and destroys bacteria integrity to cause bacteria death. Meanwhile, PMT itself exhibited improved fibroblast viability and adhesion, with the PMT + light group revealing further activation of fibroblast cells, suggesting the coordinated action of Mg2+ and PBM effects. The underlying molecular mechanism might be the elevated gene expressions of Fibronectin 1, Col1a1, and Vinculin. In addition, the in vivo rat periodontitis model proved the superior therapeutic effects of PMT with laser illumination using micro-computed tomography analysis and histological staining, which presented decreased inflammatory cells, increased collagen production, and higher alveolar bone level in the PMT group. Our study sheds light on a promising strategy to fight periodontitis using versatile microspheres, which combine aPDT and PBM-assisted fibroblast activation functions.
Collapse
Affiliation(s)
- Wanmeng Wang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yuan Tian
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
7
|
Ding Z, Peng Q, Zuo J, Wang Y, Zhou H, Tang Z. Osteogenesis Performance of Boronized Ti6Al4V/HA Composites Prepared by Microwave Sintering: In Vitro and In Vivo Studies. MATERIALS 2022; 15:ma15144985. [PMID: 35888453 PMCID: PMC9321446 DOI: 10.3390/ma15144985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
The boronized Ti6Al4V/HA composite is deemed to be an important biomaterial because of its potential remarkable mechanical and biological properties. This paper reports the osteogenesis performance of the boronized Ti6Al4V/HA composite, which was prepared by microwave sintering of powders of Ti6Al4V, hydroxyapatite (HA), and TiB2 in high-purity Ar gas at 1050 °C for 30 min, as dental implant based on both cell experiments in vitro and animal experiments in vivo. The comparison between the boronized Ti6Al4V/HA composite and Ti, Ti6Al4V, and boronized Ti6Al4V in the terms of adhesion, proliferation, alkaline phosphate (ALP) activity, and mineralization of MG-63 cells on their surfaces confirmed that the composite exhibited the best inductive osteogenesis potential. It exerted a more significant effect on promoting the early osteogenic differentiation of osteoblasts and exhibited the maximum optical density (OD) value in the MTT assay and the highest levels of ALP activity and mineralization ability, primarily ascribed to its bioactive HA component, porous structure, and relatively rough micro-morphology. The in vivo study in rabbits based on the micro-computed tomography (micro-CT) analysis, histological and histomorphometric evaluation, and biomechanical testing further confirmed that the boronized Ti6Al4V/HA composite had the highest new bone formation potential and the best osseointegration property after implantation for up to 12 weeks, mainly revealed by the measured values of bone volume fraction, bone implant contact, and maximum push-out force which, for example, reached 48.64%, 61%, and 150.3 ± 6.07 N at the 12th week. Owing to these inspiring features, it can serve as a highly promising dental implant.
Collapse
Affiliation(s)
- Zhenyu Ding
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Correspondence: ; Tel.: +86-731-8481-2058
| | - Jun Zuo
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Hongbo Zhou
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Zhao Z, Wang H, Li X, Hou J, Yang Y, Li H. Comprehensive analysis of DNA methylation for periodontitis. Int J Implant Dent 2022; 8:22. [PMID: 35491409 PMCID: PMC9058047 DOI: 10.1186/s40729-022-00420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background Periodontitis is an infectious disease, and a risk factor for peri-implantitis that could result in the implant loss. DNA methylation has an essential role in the etiology and pathogenesis of inflammatory disease. However, there is lack of study on methylation status of genes in periodontitis. This study sought to explore the gene methylation profiling microarray in periodontitis. Methods Through searching in the Gene Expression Omnibus database, a gene methylation profiling data set GSE173081 was identified, which included 12 periodontitis samples and 12 normal samples, respectively. Thereafter, the data of GSE173081 was downloaded and analyzed to determined differentially methylated genes (DMGs), which then were used to perform Gene Ontology analysis and pathway enrichment analyses through online database. In addition, the DMGs were applied to construct the protein–protein interaction (PPI) network information, predict the hub genes in pathology of periodontitis. Results In total 668 DMGs were sorted and identified from the data set, which included 621 hypo-methylated genes and 47 hyper-methylated genes. Through the function and ontology analysis, these 668 genes are mainly classified into intracellular signaling pathway, cell components, cell–cell interaction, and cellular behaviors. The pathway analysis showed that the hypo-methylated genes were mostly enriched in the pathway of cGMP–PKG signaling pathway; RAF/MAP kinase; PI3K–Akt signaling pathway, while hyper-methylated genes were mostly enriched in the pathway of bacterial invasion of epithelial cells; sphingolipid signaling pathway and DCC mediated attractive signaling. The PPI network contained 630 nodes and 1790 interactions. Moreover, further analysis identified top 10 hub genes (APP; PAX6; LPAR1; WNT3A; BMP2; PI3KR2; GATA4; PLCB1; GATA6; CXCL12) as central nodes that are involved in the immune system and the inflammatory response. Conclusions This study provides comprehensive information of methylation status of genes to the revelation of periodontitis pathogenesis that may contribute to future research on periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s40729-022-00420-8.
Collapse
|
9
|
Huang R, Hao Y, Pan Y, Pan C, Tang X, Huang L, Du C, Yue R, Cui D. Using a two-step method of surface mechanical attrition treatment and calcium ion implantation to promote the osteogenic activity of mesenchymal stem cells as well as biomineralization on a β-titanium surface. RSC Adv 2022; 12:20037-20053. [PMID: 35919615 PMCID: PMC9277716 DOI: 10.1039/d2ra00032f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Combination of the SMAT technique and Ca-ion implantation produced a β-titanium alloy with a bioactive surface layer, which was proved to effectively promote the osteogenic activity of MSCs and Ca–P mineral deposition in vitro.
Collapse
Affiliation(s)
- Run Huang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
- Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Yufei Hao
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yusong Pan
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Chengling Pan
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Xiaolong Tang
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
- Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Lei Huang
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan 430060, China
| | - Chao Du
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Rui Yue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Diansheng Cui
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan 430060, China
| |
Collapse
|
10
|
Sun Y, Lu R, Liu J, Wang X, Dong H, Chen S. The Early Adhesion Effects of Human Gingival Fibroblasts on Bovine Serum Albumin Loaded Hydrogenated Titanium Nanotube Surface. Molecules 2021; 26:molecules26175229. [PMID: 34500663 PMCID: PMC8434219 DOI: 10.3390/molecules26175229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
The soft tissue sealing at the transmucal portion of implants is vital for the long-term stability of implants. Hydrogenated titanium nanotubes (H2-TNTs) as implant surface treatments were proved to promote the adhesion of human gingival fibroblasts (HGFs) and have broad usage as drug delivery systems. Bovine serum albumin (BSA) as the most abundant albumin in body fluid was crucial for cell adhesion and was demonstrated as a normal loading protein. As the first protein arriving on the surface of the implant, albumin plays an important role in initial adhesion of soft tissue cells, it is also a common carrier, transferring and loading different endogenous and exogenous substances, ions, drugs, and other small molecules. The aim of the present work was to investigate whether BSA-loaded H2-TNTs could promote the early adhesion of HGFs; H2-TNTs were obtained by hydrogenated anodized titanium dioxide nanotubes (TNTs) in thermal treatment, and BSA was loaded in the nanotubes by vacuum drying; our results showed that the superhydrophilicity of H2-TNTs is conducive to the loading of BSA. In both hydrogenated titanium nanotubes and non-hydrogenated titanium nanotubes, a high rate of release was observed over the first hour, followed by a period of slow and sustained release; however, BSA-loading inhibits the early adhesion of human gingival fibroblasts, and H2-TNTs has the best promoting effect on cell adhesion. With the release of BSA after 4 h, the inhibitory effect of BSA on cell adhesion was weakened.
Collapse
Affiliation(s)
| | | | | | | | | | - Su Chen
- Correspondence: ; Tel.: +86-10-5709-9279
| |
Collapse
|
11
|
Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioact Mater 2021; 6:4186-4208. [PMID: 33997502 PMCID: PMC8099919 DOI: 10.1016/j.bioactmat.2021.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
The oral and maxillofacial regions have complex anatomical structures and different tissue types, which have vital health and aesthetic functions. Biodegradable metals (BMs) is a promising bioactive materials to treat oral and maxillofacial diseases. This review summarizes the research status and future research directions of BMs for oral and maxillofacial applications. Mg-based BMs and Zn-based BMs for bone fracture fixation systems, and guided bone regeneration (GBR) membranes, are discussed in detail. Zn-based BMs with a moderate degradation rate and superior mechanical properties for GBR membranes show great potential for clinical translation. Fe-based BMs have a relatively low degradation rate and insoluble degradation products, which greatly limit their application and clinical translation. Furthermore, we proposed potential future research directions for BMs in the oral and maxillofacial regions, including 3D printed BM bone scaffolds, surface modification for BMs GBR membranes, and BMs containing hydrogels for cartilage regeneration, soft tissue regeneration, and nerve regeneration. Taken together, the progress made in the development of BMs in oral and maxillofacial regions has laid a foundation for further clinical translation.
Collapse
|
12
|
Wang L, Luo Q, Zhang X, Qiu J, Qian S, Liu X. Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts. Bioact Mater 2021; 6:64-74. [PMID: 32817914 PMCID: PMC7419333 DOI: 10.1016/j.bioactmat.2020.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment, protecting implants from the invasion of bacteria or external stimuli. In this work, magnesium (Mg) and zinc (Zn) are introduced into titanium by plasma immersed ion implantation technology, and their effects on the behaviors of human gingival fibroblasts (HGFs) as well as the underlying mechanisms are investigated. Surface characterization confirms Mg and Zn exist on the surface in metallic and oxidized states. Contact angle test suggests that surface wettability of titanium changes after ion implantation and thus influences protein adsorption of surfaces. In vitro studies disclose that HGFs on Mg ion-implanted samples exhibit better adhesion and migration while cells on Zn ion-implanted samples have higher proliferation rate and amounts. The results of immunofluorescence staining and real-time reverse-transcriptase polymerase chain reaction (RT-PCR) suggest that Mg mainly regulates the motility and adhesion of HGFs through activating the MAPK signal pathway whereas Zn influences HGFs proliferation by triggering the TGF-β signal pathway. The synergistic effect of Mg and Zn ions ensure that HGFs cultured on co-implanted samples possessed both high proliferation rate and motility, which are critical to soft tissue sealing of implants.
Collapse
Key Words
- BSA, bovine serum albumin
- CLSM, confocal laser-scanning microscope
- DAPI, 4′, 6-diamidino-2-phenylindole
- ECM, extracellular matrix
- FM, fibroblasts medium
- HGFs, human gingival fibroblasts
- Human gingival fibroblasts
- Magnesium
- PBS, phosphate buffer saline
- PFA, para-formaldehyde
- PIII, plasma immersion ion implantation
- Plasma immersion ion implantation
- RT-PCR, reverse-transcriptase polymerase chain reaction
- SEM, scanning electron microscope
- Soft tissue sealing
- XPS, X-ray photoelectron spectroscopy
- Zinc
Collapse
Affiliation(s)
- Lanyu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiming Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
13
|
Iinuma Y, Hirota M, Hayakawa T, Ohkubo C. Surrounding Tissue Response to Surface-Treated Zirconia Implants. MATERIALS 2019; 13:ma13010030. [PMID: 31861679 PMCID: PMC6981750 DOI: 10.3390/ma13010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022]
Abstract
Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which are partially stabilized zirconia, have been used for fabricating dental implants. This study investigated the soft tissue attachment, the collagen fiber orientation to zirconia at different surface conditions, and the bone response using implantation experiments in animals. The zirconia implant surfaces were treated with ultraviolet irradiation (UV), a combination of large-grit sandblasting and hydrofluoric acid etching (blastedHF), and a combination of blastedHF and UV (blastedHF+UV). The surface treated with blastedHF and blastedHF+UV appeared rough and hydrophilic. The surface treated with blastedHF+UV appeared to be superhydrophilic. Subsequently, tapered cylindrical zirconia implants were placed in the alveolar sockets of the maxillary molars of rats. The bone-to-implant contact ratio of blastedHF and blastedHF+UV implants was significantly higher than that of the non-treated controls and UV-treated implants. The four different surface-treated zirconia implants demonstrated tight soft tissue attachments. Perpendicularly oriented collagen fibers towards zirconia implants were more prominent in blastedHF and blastedHF+UV implants compared to the controls and UV-treated implants. The area of the soft tissue attachment was the greatest with the perpendicularly oriented collagen fibers of blastedHF+UV-treated implants. In conclusion, blastedHF+UV treatment could be beneficial for ensuring greater soft-tissue attachment for zirconia implants.
Collapse
Affiliation(s)
- Yohei Iinuma
- Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan;
- Correspondence: ; Tel.: +81-45580-8421
| | - Masatsugu Hirota
- School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan; (M.H.); (T.H.)
| | - Tohru Hayakawa
- School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan; (M.H.); (T.H.)
| | - Chikahiro Ohkubo
- Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan;
| |
Collapse
|