1
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Lei N, Peng X, Hu M, Wan C, Yu X. Research on essential performance of oxidized chitosan-crosslinked acellular porcine aorta modified with bioactive SCPP/DOPA for esophageal scaffold with enhanced mechanical strength, biocompatibility and anti-inflammatory. Int J Biol Macromol 2023; 241:124522. [PMID: 37100332 DOI: 10.1016/j.ijbiomac.2023.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Acellular porcine aorta (APA) is an excellent candidate for an implanted scaffold but needs to be modified with appropriate cross-linking agent to increase its mechanical property and storage time in vitro as well as to give itself some bioactivities and eliminate its antigenicity for acting as a novel esophageal prosthesis. In this paper, a polysaccharide crosslinker (oxidized chitosan, OCS) was prepared by oxidizing chitosan using NaIO4 and further used to fix APA to prepare a novel esophageal prosthesis (scaffold). And then the surface modification with dopamine (DOPA) and strontium-doped calcium polyphosphate (SCPP) were performed one after another to prepare DOPA/OCS-APA and SCPP-DOPA/OCS-APA to improve the biocompatibility and inhibit inflammation of the scaffolds. The results showed that the OCS with a feeding ratio of 1.5:1.0 and a reaction time of 24 h had a suitable molecular weight and oxidation degree, almost no cytotoxicity and good cross-linking effect. Compared with glutaraldehyde (GA) and genipin (GP), OCS-fixed APA could provide a more suitable microenvironment for cell proliferation. The vital cross-linking characteristics and cytocompatibility of SCPP-DOPA/OCS-APA were evaluated. Results suggested that SCPP-DOPA/OCS-APA exhibited suitable mechanical properties, excellent resistance to enzymatic degradation/acid degradation, suitable hydrophilicity, and the ability to promote the proliferation of Human normal esophageal epithelial cells (HEECs) and inhibit inflammation in vitro. In vivo tests also confirmed that SCPP-DOPA/OCS-APA could diminish the immunological response to samples and had a positive impact on bioactivity and anti-inflammatory. In conclusion, SCPP-DOPA/OCS-APA could act as an effective, bioactive artificial esophageal scaffold and be expected to be used for clinical in the future.
Collapse
Affiliation(s)
- Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Witkowska M, Golusińska-Kardach E, Golusiński W, Florek E. Polydopamine-Based Material and Their Potential in Head and Neck Cancer Therapy-Current State of Knowledge. Int J Mol Sci 2023; 24:4890. [PMID: 36902321 PMCID: PMC10003234 DOI: 10.3390/ijms24054890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Head and neck cancers (HNC) are among the most common cancers in the world. In terms of frequency of occurrence in the world, HNC ranks sixth. However, the problem of modern oncology is the low specificity of the therapies used, which is why most of the currently used chemotherapeutic agents have a systemic effect. The use of nanomaterials could overcome the limitations of traditional therapies. Researchers are increasingly using polydopamine (PDA) in nanotherapeutic systems for HNC due to its unique properties. PDA has found applications in chemotherapy, photothermal therapy, targeted therapy, and combination therapies that facilitate better carrier control for the effective reduction of cancer cells than individual therapies. The purpose of this review was to present the current knowledge on the potential use of polydopamine in head and neck cancer research.
Collapse
Affiliation(s)
- Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ewelina Golusińska-Kardach
- Department and Clinic of Dental Surgery, Periodontal Diseases and Oral Mucosa, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Wojciech Golusiński
- Department and Clinic of Head and Neck Surgery and Laryngological Oncology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| |
Collapse
|
4
|
Tian L, Li X, Ji H, Yu Q, Yang M, Guo L, Huang L, Gao W. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnology 2022; 20:485. [PMCID: PMC9675272 DOI: 10.1186/s12951-022-01698-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, tumor treatments are characterized by intelligence, diversity and personalization, but the therapeutic reagents used are often limited in clinical efficacy due to problems with water solubility, targeting, stability and multidrug resistance. To remedy these shortcomings, the application of multifunctional nanotechnology in the biomedical field has been widely studied. Synthetic melanin nanoparticles (MNPs) surfaces which contain highly reactive chemical groups such as carboxyl, hydroxyl and amine groups, can be used as a reaction platform on which to graft different functional components. In addition, MNPs easily adhere to substrate surface, and serve as a secondary reaction platform to modify it. The multifunctionality and intrinsic biocompatibility make melanin-like nanoparticles promising as a multifunctional and powerful nanoplatform for oncological applications. This paper first reviews the preparation methods, polymerization mechanisms and physicochemical properties of melanin including natural melanin and chemically synthesized melanin to guide scholars in MNP-based design. Then, recent advances in MNPs especially synthetic polydopamine (PDA) melanin for various medical oncological applications are systematically and thoroughly described, mainly focusing on bioimaging, photothermal therapy (PTT), and drug delivery for tumor therapy. Finally, based on the investigated literature, the current challenges and future directions for clinical translation are reasonably discussed, focusing on the innovative design of MNPs and further elucidation of pharmacokinetics. This paper is a timely and comprehensive and detailed study of the progress of MNPs in tumor therapy, especially PTT, and provides ideas for the design of personalized and customizable oncology nanomedicines to address the heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Luyao Tian
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Xia Li
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Haixia Ji
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Qing Yu
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Mingjuan Yang
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Lanping Guo
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wenyuan Gao
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| |
Collapse
|
5
|
Wei X, Tang Z, Wu H, Zuo X, Dong H, Tan L, Wang W, Liu Y, Wu Z, Shi L, Wang N, Li X, Xiao X, Guo Z. Biofunctional magnesium-coated Ti6Al4V scaffolds promote autophagy-dependent apoptosis in osteosarcoma by activating the AMPK/mTOR/ULK1 signaling pathway. Mater Today Bio 2021; 12:100147. [PMID: 34704011 PMCID: PMC8523865 DOI: 10.1016/j.mtbio.2021.100147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The recurrence of osteosarcoma (OS) after reconstruction using Ti6Al4V prostheses remains a major problem in the surgical treatment of OS. Modification of the surfaces of Ti6Al4V prostheses with antitumor functions is an important strategy for improving therapeutic outcomes. Magnesium (Mg) coating has been shown to be multifunctional: it exhibits osteogenic and angiogenic properties and the potential to inhibit OS. In this study, we determined the proper concentration of released Mg2+ with respect to OS inhibition and biosafety and evaluated the anti-OS effects of Mg-coated Ti6Al4V scaffolds. We found that the release of Mg2+ during short-term and long-term degradation could significantly inhibit the proliferation and migration of HOS and 143B cells. Increased cell apoptosis and excessive autophagy were also observed, and further evidence of AMPK/mTOR/ULK1 signaling pathway activation was obtained both in vitro and in vivo, which suggested that the biofunctional scaffolds induce OS inhibition. Our study demonstrates the ability of an Mg coating to inhibit OS and may contribute to the further application of Mg-coated Ti6Al4V prostheses. Multifunctional Mg coating is considerable surface modification for Ti6Al4V prostheses. Mg2+ releasing by the scaffolds could significantly inhibit the proliferation and migration of OS cells. The biofunctional scaffolds could inhibit OS by activating autophagy-dependent apoptosis. The AMPK/mTOR/ULK-1 pathway was involved in autophagy-depended apoptosis induced by the scaffolds.
Collapse
Affiliation(s)
- X Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Zuo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Tan
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - W Wang
- Department of Immunology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Y Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - N Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - X Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| |
Collapse
|
6
|
Xu R, Zhang K, Liang J, Gao F, Li J, Guan F. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydr Polym 2021; 261:117846. [PMID: 33766342 DOI: 10.1016/j.carbpol.2021.117846] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
In the clinical treatment of cancer, improving the effectiveness and targeting of drugs has always been a bottleneck problem that needs to be solved. In this contribution, inspired by the targeted inhibition on cancer from combination application of disulfiram and divalent copper ion (Cu2+), we optimized the concentration of disulfiram and Cu2+ ion for inhibiting esophageal cancer cells, and loaded them in hyaluronic acid (HA)/polyethyleneimine (PEI) nanoparticles with specific scales, in order to improve the effectiveness and targeting of drugs. The in vitro cell experiments demonstrated that more drug loaded HA/PEI nanoparticles accumulated to the esophageal squamous cell carcinoma (Eca109) and promoted higher apoptosis ratio of Eca109. Both in vitro and in vivo biological assessment verified that the disulfiram/Cu2+ loaded HA/PEI nanoparticles promoted the apoptosis of cancer cells and inhibited the tumor proliferation, but had no toxicity on other normal organs.
Collapse
Affiliation(s)
- Ru Xu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Feng Gao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jingan Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|