1
|
Hu X, Su Y, Ma H, Zhu J, Cheng YY, Li W, Zhong Y, Pan B, Song K. Culturing 3D chitosan/gelatin/nano-hydroxyapatite and bone-derived scaffolds in a dynamic environment enhances osteochondral reconstruction. Int J Biol Macromol 2024; 283:137892. [PMID: 39581399 DOI: 10.1016/j.ijbiomac.2024.137892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Bioreactor can provide a dynamic culture environment for the in vitro construction of osteochondral tissue engineering. They facilitate more efficient exchange of nutrients and provide mechanical and other beneficial stimulation. Previous findings demonstrated that rotary flask (RF) bioreactor, rotary cell culture system (RCCS), or electromagnetic field (EMF) mediated scaffold culture could create a favorable dynamic environment for osteochondral tissue engineering. However, it is still unclear whether there is an optimal bioreactor or if bioreactors under multi-parameter coupling conditions are conducive to osteochondral tissue engineering. Based on this, the application of static T-flask (TF), RF, RCCS, and coupling environment of RCCS and EMF for osteochondral tissue engineering were systematically compared. The results showed that the RCCS/EMF culture system achieved the highest level of cellular proliferation and directed differentiation. Compared with the static culture group, the expression levels of chondrogenic factors of Sox9, Col II, and ACAN and osteogenic factors of Runx2, OCN, and Col I in RCCS/EMF culture system were 2.90 ± 0.10, 3.53 ± 0.05, 3.15 ± 0.08, 7.16 ± 0.15, 5.01 ± 0.21 and 3.99 ± 0.17 folds, respectively. The 'Active osteochondral' constructs (The construct is composed of chitosan/gelatin/nano-hydroxyapatite and bone-derived scaffolds) were prepared under different culture modes in vitro and implanted into the femoral condylar defect of New Zealand rabbits. After 12 weeks, all culture modes could effectively promote the repair of osteochondral defects, in which the RCCS/EMF intervention had the best effect on the in vivo in-situ repair of osteochondral tissues. Furthermore, the fabricated cartilage and subchondral bone in the RCCS/EMF treatment group were most similar to the surrounding natural tissues, providing a new therapeutic idea for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China.
| | - Yiming Zhong
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, China.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Favero G, van Noorden CJF, Rezzani R. The Buccal Fat Pad: A Unique Human Anatomical Structure and Rich and Easily Accessible Source of Mesenchymal Stem Cells for Tissue Repair. Bioengineering (Basel) 2024; 11:968. [PMID: 39451344 PMCID: PMC11505344 DOI: 10.3390/bioengineering11100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 10/26/2024] Open
Abstract
Buccal fat pads are biconvex adipose tissue bags that are uniquely found on both sides of the human face along the anterior border of the masseter muscles. Buccal fat pads are important determinants of facial appearance, facilitating gliding movements of facial masticatory and mimetic muscles. Buccal fad pad flaps are used for the repair of oral defects and as a rich and easily accessible source of mesenchymal stem cells. Here, we introduce the buccal fat pad anatomy and morphology and report its functions and applications for oral reconstructive surgery and for harvesting mesenchymal stem cells for clinical use. Future frontiers of buccal fat pad research are discussed. It is concluded that many biological and molecular aspects still need to be elucidated for the optimal application of buccal fat pad tissue in regenerative medicine.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Cornelis J. F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
3
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Thangadurai M, Srinivasan SS, Sekar MP, Sethuraman S, Sundaramurthi D. Emerging perspectives on 3D printed bioreactors for clinical translation of engineered and bioprinted tissue constructs. J Mater Chem B 2024; 12:350-381. [PMID: 38084021 DOI: 10.1039/d3tb01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
3D printed/bioprinted tissue constructs are utilized for the regeneration of damaged tissues and as in vitro models. Most of the fabricated 3D constructs fail to undergo functional maturation in conventional in vitro settings. There is a challenge to provide a suitable niche for the fabricated tissue constructs to undergo functional maturation. Bioreactors have emerged as a promising tool to enhance tissue maturation of the engineered constructs by providing physical/biological cues along with a controlled nutrient supply under dynamic in vitro conditions. Bioreactors provide an ambient microenvironment most appropriate for the development of functionally matured tissue constructs by promoting cell proliferation, differentiation, and maturation for transplantation and drug screening applications. Due to the huge cost and limited availability of commercial bioreactors, there is a need to develop strategies to make customized bioreactors. Additive manufacturing (AM) may be a viable tool to fabricate custom designed bioreactors with better efficiency and at low cost. In this review, we have extensively discussed the importance of bioreactors in functionalizing tissue engineered/3D bioprinted scaffolds for bone, cartilage, skeletal muscle, nerve, and vascular tissue. In addition, the importance and fabrication of customized 3D printed bioreactors for the maturation of tissue engineered constructs are discussed in detail. Finally, the current challenges and future perspectives in translating commercial and custom 3D printed bioreactors for clinical applications are outlined.
Collapse
Affiliation(s)
- Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Sai Sadhananth Srinivasan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
5
|
Teimoori M, Nokhbatolfoghahaei H, Khojasteh A. Bilayer scaffolds/membranes for bone tissue engineering applications: A systematic review. BIOMATERIALS ADVANCES 2023; 153:213528. [PMID: 37352742 DOI: 10.1016/j.bioadv.2023.213528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE This systematic review evaluates the purpose, materials, physio-mechanical, and biological effects of bilayer scaffolds/membranes used for bone tissue engineering applications. METHODS A comprehensive electronic search of English-language literature from 2012 to October 2022 was conducted in PubMed, Scopus, ScienceDirect, and Google Scholar online databases according to the PRISMA 2020 guidelines. The quality of animal studies was evaluated through the SYRCLE's risk of bias tool. RESULTS A total of 77 studies were sought for retrieval, and 39 studies met the inclusion criteria. According to the synthesis results, most bilayers had a dense barrier layer that prevented connective tissue penetration and a loose osteogenic layer that supported cell migration and osteogenesis. PLGA, PCL, and chitosan were the most common polymers in the barrier layers, while the most utilized polymers in osteogenic layers were PLGA and gelatin. Electrospinning and solvent casting were the most common fabrication methods to design the bilayer structures. Many studies reported higher biological results for bilayers compared to their single layers. Also, fabricated bilayers' in vitro osteogenesis and in vivo new bone formation were significantly superior or at least comparable to the frequently used commercial membranes. CONCLUSION 1) Bilayers with two distinct layers and different materials, porosities, mechanical properties, and biological behavior can significantly improve heterogeneous bone regeneration; 2) the addition of ceramics and/or drugs to the osteogenic layer enhances the osteogenic properties of the bilayers; 3) fabrication method and pore size of the layers play an important role in determining the mechanical and biological behavior of them.
Collapse
Affiliation(s)
- Mahdis Teimoori
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Deymeh SM, Hashemi-Najafabadi S, Baghaban-Eslaminejad M, Bagheri F. Investigation of osteogenesis and angiogenesis in perfusion bioreactors using improved multi-layer PCL-nHA-nZnO electrospun scaffolds. Biotechnol Lett 2023; 45:1223-1243. [PMID: 37439932 DOI: 10.1007/s10529-023-03411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/07/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Bone tissue engineering aims to create a three-dimensional, matured, angiogenic scaffold with a suitable thickness that resembles a natural bone matrix. On the other hand, electrospun fibers, which researchers have considered due to their good biomimetic properties, are considered 2D structures. Due to the highly interwoven network and small pore size, achieving the desired thickness for bone lesions has always been challenging. In bone tissue engineering, bioreactors are crucial for achieving initial tissue maturity and introducing certain signals as flow parameters for differentiation. METHODS In the present study, Human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were co-cultured in a perfusion bioreactor on treated (improved pore size by gelatin sacrification and subsequent ultrasonication) 5-layer polycaprolactone-nano hydroxyapatite-nano zinc oxide (T-PHZ) scaffolds to investigate osteogenesis and angiogenesis simultaneously. The flow parameters and stresses on the cells were studied using two patterns of parallel and vertical scaffolds relative to the flow of the culture medium. In dynamic vertical flow (DVF), the culture medium flows perpendicular to the scaffolds, and in dynamic parallel flow (DPF), the culture medium flows parallel to the scaffolds. In all evaluations, static samples (S) served as the control group. RESULTS Live/dead, and MTT assays demonstrated the biocompatibility of the 5-layer scaffolds and the suitability of the bioreactor's functional conditions. ALP activity, EDAX analysis, and calcium content measurements exhibited greater osteogenesis for T-PHZ scaffolds in DVF conditions. Calcium content increased by a factor of 2.2, 1.8, and 1.6 during days 7 to 14 of culture under DVF, DPF and S conditions, respectively. After 21 days of co-culturing, an immunohistochemistry (IHC) test was performed to investigate angiogenesis and osteogenesis. Five antibodies were investigated in DVF, CD31, VEGFA, and VEGFR2 for angiogenesis, osteocalcin, and RUNX2 for osteogenesis. Compressive stress applied in DVF mode has increased osteogenic activity compared to DPF. CONCLUSION The results indicated the development of ideal systems for osteogenesis and angiogenesis on the treated multilayer electrospun scaffolds in the perfusion bioreactor.
Collapse
Affiliation(s)
- Saeed Moghadam Deymeh
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban-Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Kazimierczak P, Kalisz G, Sroka-Bartnicka A, Przekora A. Effectiveness of the production of tissue-engineered living bone graft: a comparative study using perfusion and rotating bioreactor systems. Sci Rep 2023; 13:13737. [PMID: 37612367 PMCID: PMC10447456 DOI: 10.1038/s41598-023-41003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023] Open
Abstract
Bioreactor systems are very precious tools to generate living bone grafts in vitro. The aim of this study was to compare the effectiveness of rotating and perfusion bioreactor in the production of a living bone construct. Human bone marrow-derived mesenchymal stem cells (BMDSCs) were seeded on the surfaces of hydroxyapatite-based scaffolds and cultured for 21 days in three different conditions: (1) static 3D culture, (2) 3D culture in a perfusion bioreactor, and (3) dynamic 3D culture in a rotating bioreactor. Quantitative evaluation of cell number showed that cultivation in the perfusion bioreactor significantly reduced cell proliferation compared to the rotating bioreactor and static culture. Osteogenic differentiation test demonstrated that BMDSCs cultured in the rotating bioreactor produced significantly greater amount of osteopontin compared to the cells cultured in the perfusion bioreactor. Moreover, Raman spectroscopy showed that cultivation of BMDSCs in the rotating bioreactor enhanced extracellular matrix (ECM) mineralization that was characterized by B-type carbonated substitution of hydroxyapatite (associated with PO43- groups) and higher mineral-to-matrix ratio compared to the ECM of cells cultured in the perfusion system. Thus, it was concluded that the rotating bioreactor was much more effective than the perfusion one in the generation of bone tissue construct in vitro.
Collapse
Affiliation(s)
- Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093, Lublin, Poland.
| | - Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093, Lublin, Poland
| |
Collapse
|
8
|
Yamada S, Ockermann PN, Schwarz T, Mustafa K, Hansmann J. Translation of biophysical environment in bone into dynamic cell culture under flow for bone tissue engineering. Comput Struct Biotechnol J 2023; 21:4395-4407. [PMID: 37711188 PMCID: PMC10498129 DOI: 10.1016/j.csbj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The processes of mechano-sensory and -transduction towards bone formation have been well studied mainly in vivo as well as in two-dimensional (2D) dynamic cell culture platforms, which elucidated mechanically induced osteogenesis starting with anabolic responses, such as production of nitrogen oxide and prostaglandins followed by the activation of canonical Wnt signaling, upon mechanosensation. The knowledge has been now translated into regenerative medicine, particularly into the field of bone tissue engineering, where multipotent stem cells are combined with three-dimensional (3D) scaffolding biomaterials to produce transplantable constructs for bone regeneration. In the presence of 3D scaffolds, the importance of suitable dynamic cell culture platforms increases further not only to improve mass transfer inside the scaffolds but to provide appropriate biophysical cues to guide cell fate. In principle, the concept of dynamic cell culture platforms is rooted to bone mechanobiology. Therefore, this review primarily focuses on biophysical environment in bone and its translation into dynamic cell culture platforms commonly used for 2D and 3D cell expansion, including their advancement, challenges, and future perspectives. Additionally, it provides the literature review of recent empirical studies using 2D and 3D flow-based dynamic cell culture systems for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Philipp Niklas Ockermann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Kamal Mustafa
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
- Department of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Germany
| |
Collapse
|
9
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bioengineered Living Bone Grafts-A Concise Review on Bioreactors and Production Techniques In Vitro. Int J Mol Sci 2022; 23:ijms23031765. [PMID: 35163687 PMCID: PMC8836415 DOI: 10.3390/ijms23031765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.
Collapse
|
11
|
Lipreri MV, Baldini N, Graziani G, Avnet S. Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Front Cell Dev Biol 2022; 9:760667. [PMID: 35047495 PMCID: PMC8762164 DOI: 10.3389/fcell.2021.760667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Biomedical Science and Technologies Lab, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Laboratory for NanoBiotechnology (NaBi), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112662. [DOI: 10.1016/j.msec.2022.112662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
|
13
|
Nokhbatolfoghahaei H, Rad MR, Paknejad Z, Ardeshirylajimi A, Khojasteh A. Identification osteogenic signaling pathways following mechanical stimulation: A systematic review. Curr Stem Cell Res Ther 2021; 17:772-792. [PMID: 34615453 DOI: 10.2174/1574888x16666211006105915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION It has been shown that mechanical forces can induce or promote osteogenic differentiation as well as remodeling of the new created bone tissues. To apply this characteristic in bone tissue engineering, it is important to know which mechanical stimuli through which signaling pathway has a more significant impact on osteogenesis. METHODS In this systematic study, an electronic search was conducted using PubMed and Google Scholar databases. This study has been prepared and organized according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Included studies were first categorized according to the in vivo and in vitro studies. RESULTS Six types of mechanical stresses were used in these articles and the most commonly used mechanical force and cell source were tension and bone marrow-derived mesenchymal stem cells (BMMSCs), respectively. These forces were able to trigger twelve signaling pathways in which Wnt pathway was so prominent. CONCLUSION 1) Although specific signaling pathways are induced through specific mechanical forces, Wnt signaling pathways are predominantly activated by almost all types of force/stimulation, 2) All signaling pathways regulate expression of RUNX2, which is known as a master regulator of osteogenesis, 3) In Tension force, the mode of force administration, i.e, continuous or non-continuous tension is more important than the percentage of elongation.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahrasadat Paknejad
- Medical nanotechnology and tissue engineering research Center, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
14
|
Suhaimi H, Ward JP, Das DB. On modelling of glucose transport in hollow fibre membrane bioreactor for growing three‐dimensional tissue. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hazwani Suhaimi
- Department of Chemical Engineering Loughborough University Leicestershire UK
| | - John Peter Ward
- Department of Mathematical Sciences Loughborough University Leicestershire UK
| | - Diganta Bhusan Das
- Department of Chemical Engineering Loughborough University Leicestershire UK
| |
Collapse
|
15
|
Emara A, Shah R. Recent update on craniofacial tissue engineering. J Tissue Eng 2021; 12:20417314211003735. [PMID: 33959245 PMCID: PMC8060749 DOI: 10.1177/20417314211003735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The craniofacial region consists of several different tissue types. These tissues are quite commonly affected by traumatic/pathologic tissue loss which has so far been traditionally treated by grafting procedures. With the complications and drawbacks of grafting procedures, the emerging field of regenerative medicine has proved potential. Tissue engineering advancements and the application in the craniofacial region is quickly gaining momentum although most research is still at early in vitro/in vivo stages. We aim to provide an overview on where research stands now in tissue engineering of craniofacial tissue; namely bone, cartilage muscle, skin, periodontal ligament, and mucosa. Abstracts and full-text English articles discussing techniques used for tissue engineering/regeneration of these tissue types were summarized in this article. The future perspectives and how current technological advancements and different material applications are enhancing tissue engineering procedures are also highlighted. Clinically, patients with craniofacial defects need hybrid reconstruction techniques to overcome the complexity of these defects. Cost-effectiveness and cost-efficiency are also required in such defects. The results of the studies covered in this review confirm the potential of craniofacial tissue engineering strategies as an alternative to avoid the problems of currently employed techniques. Furthermore, 3D printing advances may allow for fabrication of patient-specific tissue engineered constructs which should improve post-operative esthetic results of reconstruction. There are on the other hand still many challenges that clearly require further research in order to catch up with engineering of other parts of the human body.
Collapse
Affiliation(s)
- Aala’a Emara
- OMFS Department, Faculty of Dentistry,
Cairo University, Cairo, Egypt
- Division of Craniofacial and Surgical
Care, University of North Carolina (UNC) School of Dentistry, Chapel Hill, NC,
USA
| | - Rishma Shah
- Division of Craniofacial and Surgical
Care, University of North Carolina (UNC) School of Dentistry, Chapel Hill, NC,
USA
| |
Collapse
|
16
|
Nokhbatolfoghahaei H, Paknejad Z, Bohlouli M, Rezai Rad M, Aminishakib P, Derakhshan S, Mohammadi Amirabad L, Nadjmi N, Khojasteh A. Fabrication of Decellularized Engineered Extracellular Matrix through Bioreactor-Based Environment for Bone Tissue Engineering. ACS OMEGA 2020; 5:31943-31956. [PMID: 33344849 PMCID: PMC7745398 DOI: 10.1021/acsomega.0c04861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 05/31/2023]
Abstract
Extracellular matrix (ECM)-contained grafts can be achieved by decellularization of native bones or synthetic scaffolds. Limitations associated with harvesting the native bone has raised interest in preparing in vitro ECM bioscaffold for bone tissue engineering. Here, we intend to develop an ECM-contained construct via decellularizing an engineered gelatin-coated β-tricalcium phosphate (gTCP) scaffold. In order to find an optimal protocol for decellularization of cell-loaded gTCP scaffolds, they were seeded with buccal fat pad-derived stem cells. Then, four decellularization protocols including sodium dodecyl sulfate, trypsin, Triton X-100, and combined solution methods were compared for the amounts of residual cells and remnant collagen and alteration of scaffold structure. Then, the efficacy of the selected protocol in removing cells from gTCP scaffolds incubated in a rotating and perfusion bioreactor for 24 days was evaluated and compared with static condition using histological analysis. Finally, decellularized scaffolds, reloaded with cells, and their cytotoxicity and osteoinductive capability were evaluated. Complete removal of cells from gTCP scaffolds was achieved from all protocols. However, treatment with Triton X-100 showed significantly higher amount of remnant ECM. Bioreactor-incubated scaffolds possessed greater magnitude of ECM proteins including collagen and glycosaminoglycans. Reseeding the decellularized scaffolds also represented higher osteoinductivity of bioreactor-based scaffolds. Application of Triton X-100 as decellularization protocol and usage of bioreactors are suggested as a suitable technique for designing ECM-contained grafts for bone tissue engineering.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental
Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983969413, Iran
- Student
Research Committee, Department of Tissue Engineering and Applied Cell
Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Zahrasadat Paknejad
- Department
of Tissue Engineering and Applied Cell Sciences, School of Advanced
Technologies in Medicine, Shahid Beheshti
University of Medical Sciences, Tehran 1985717443, Iran
- Medical
Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mahboubeh Bohlouli
- Student
Research Committee, Department of Tissue Engineering and Applied Cell
Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Maryam Rezai Rad
- Dental
Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983969413, Iran
| | - Pouyan Aminishakib
- Department
of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | - Samira Derakhshan
- Department
of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | | | - Nasser Nadjmi
- Department
of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine
& Health Sciences, University of Antwerp, Antwerp 2100, Belgium
- All
for Research vzw, Harmoniestraat
68, Antwerp 2018, Belgium
| | - Arash Khojasteh
- Dental
Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983969413, Iran
- Department
of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| |
Collapse
|