1
|
Rakhshani A, Maghsoudian S, Ejarestaghi NM, Yousefi M, Yoosefi S, Asadzadeh N, Fatahi Y, Darbasizadeh B, Nouri Z, Bahadorikhalili S, Shaabani A, Farhadnejad H, Motasadizadeh H. Polyethylene oxide-chitosan-doxorubicin/polycaprolactone-chitosan-curcumin pH-sensitive core/shell nanofibrous mats for the treatment of breast cancer: Fabrication, characterization and in vitro and in vivo evaluation. Int J Biol Macromol 2025; 305:141191. [PMID: 39971028 DOI: 10.1016/j.ijbiomac.2025.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The main objective of this study was to fabricate a pH-sensitive drug carrier based on coaxial electrospun nanofibrous mats for concurrent local delivery of hydrophilic and hydrophobic anti-cancer drugs to improve the anti-tumor efficacy on breast cancer. Therefore, co-axial electrospinning technique was applied to prepare polyethylene oxide-chitosan/polycaprolactone-chitosan (PEO-CS/PCL-CS) pH-sensitive core-shell nanofibers. Doxorubicin hydrochloride (DOX, hydrophilic anti-cancer) and curcumin (CUR, hydrophobic anticancer) were loaded into core and shell sections of the fabricated pH-sensitive coaxial nanofibers, respectively. Their structure and morphology were analyzed via SEM, TEM, TGA, and FTIR techniques. The results of in vitro release analysis indicated that the release of DOX and CUR from the fabricated nanofibers was strongly depended on pH. The combined effects of the two drugs on MCF-7 cell inhibition, as measured by the MTT assay, revealed that the 1:5 ratio of DOX to CUR resulted in a CI of 0.00492, showing the strongest synergistic effect. The results of in-vivo studies indicated that the PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibers possessed remarkable anti-tumor efficacy. As a result, PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibrous mats with pH-responsive and sustainable and controllable manner could improve the local anti-tumor efficacy on breast cancer via inhibiting the side effects of free DOX and CUR drugs.
Collapse
Affiliation(s)
- Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Yousefi
- Department of Healthcare Emergency Management, Faculty of Medicine, Boston University, Boston, MA, USA; Graduate, Veterinary Medicine School, Āzad University, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Asadzadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Khan MQ, Alvi MA, Nawaz HH, Umar M. Cancer Treatment Using Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1305. [PMID: 39120410 PMCID: PMC11314412 DOI: 10.3390/nano14151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Abbas Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hafiza Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Wildy M, Lu P. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7062. [PMID: 38004992 PMCID: PMC10672065 DOI: 10.3390/ma16227062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Electrospun nanofibers for drug delivery systems (DDS) introduce a revolutionary means of administering pharmaceuticals, holding promise for both improved drug efficacy and reduced side effects. These biopolymer nanofiber membranes, distinguished by their high surface area-to-volume ratio, biocompatibility, and biodegradability, are ideally suited for pharmaceutical and biomedical applications. One of their standout attributes is the capability to offer the controlled release of the active pharmaceutical ingredient (API), allowing custom-tailored release profiles to address specific diseases and administration routes. Moreover, stimuli-responsive electrospun DDS can adapt to conditions at the drug target, enhancing the precision and selectivity of drug delivery. Such localized API delivery paves the way for superior therapeutic efficiency while diminishing the risk of side effects and systemic toxicity. Electrospun nanofibers can foster better patient compliance and enhanced clinical outcomes by amplifying the therapeutic efficiency of routinely prescribed medications. This review delves into the design principles and techniques central to achieving controlled API release using electrospun membranes. The advanced drug release mechanisms of electrospun DDS highlighted in this review illustrate their versatility and potential to improve the efficacy of medical treatments.
Collapse
Affiliation(s)
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| |
Collapse
|
5
|
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen ZS, Zhou Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer 2023; 22:98. [PMID: 37344887 DOI: 10.1186/s12943-023-01798-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is a grievous disease whose treatment requires a more efficient, non-invasive therapy, associated with minimal side effects. Gold nanoparticles possessing greatly impressive optical properties have been a forerunner in bioengineered cancer therapy. This theranostic system has gained immense popularity and finds its application in the field of molecular detection, biological imaging, cancer cell targeting, etc. The photothermal property of nanoparticles, especially of gold nanorods, causes absorption of the light incident by the light source, and transforms it into heat, resulting in tumor cell destruction. This review describes the different optical features of gold nanoparticles and summarizes the advance research done for the application of gold nanoparticles and precisely gold nanorods for combating various cancers including breast, lung, colon, oral, prostate, and pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York City, NY, 11439, USA
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Abdouss H, Pourmadadi M, Zahedi P, Abdouss M, Yazdian F, Rahdar A, Díez-Pascual AM. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. Int J Biol Macromol 2023; 242:125134. [PMID: 37257532 DOI: 10.1016/j.ijbiomac.2023.125134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.
Collapse
Affiliation(s)
- Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Hasanbegloo K, Banihashem S, Faraji Dizaji B, Bybordi S, Farrokh-Eslamlou N, Abadi PGS, Jazi FS, Irani M. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int J Biol Macromol 2023; 230:123380. [PMID: 36706885 DOI: 10.1016/j.ijbiomac.2023.123380] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Liposomes and nanofibers have been introduced as effective drug delivery systems of anticancer drugs. The performance of chitosan (core)/poly(ε-caprolactone) (PCL)/paclitaxel simple nanofibers, chitosan/paclitaxel (core)/PCL/chitosan (shell) nanofibers and paclitaxel-loaded liposome-incorporated chitosan (core)/PCL-chitosan (shell) nanofibers was investigated for the controlled release of paclitaxel and the treatment of breast cancer. The synthesized formulations were characterized using polydispersity index, dynamic light scattering, zeta potential, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared analysis. The sustained release of paclitaxel from liposome-loaded nanofibers was achieved within 30 days. The release data was best described using Korsmeyer-Peppas pharmacokinetic model. The cell viabilities of synthesized nanofibrous samples were higher than 98 % ± 1 % toward L929 normal cells after 168 h. The maximum cytotoxicity against MCF-7 breast cancer cells was 85 % ± 2.5 % using liposome-loaded core-shell nanofibers. The in vivo results indicated the reduction of tumor weight from 1.35 ± 0.15 g to 0.65 ± 0.05 g using liposome-loaded core-shell nanofibers and its increasing from 1.35 ± 0.15 g to 3.2 ± 0.2 g using pure core-shell nanofibers. The three-stage drug release behavior of paclitaxel-loaded liposome-incorporated core-shell nanofibers and the high in vivo tumor efficiency suggested the development of these formulations for cancer treatment in the future.
Collapse
Affiliation(s)
- Kimiya Hasanbegloo
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Solmaz Banihashem
- Department of Chemistry, College of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Babak Faraji Dizaji
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Bybordi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nika Farrokh-Eslamlou
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐Maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioeng Transl Med 2023; 8:e10325. [PMID: 36684100 PMCID: PMC9842052 DOI: 10.1002/btm2.10325] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Üniversite CaddesiTuzla, IstanbulTurkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials ‐ National Research Council (IPCB‐CNR)NaplesItaly
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials InterfacesPontedera, PisaItaly
| | - Navid Rabiee
- School of Engineering, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vijay Kumar Thakur
- School of EngineeringUniversity of Petroleum & Energy Studies (UPES)DehradunUttarakhandIndia
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC)EdinburghUK
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacky UniversityOlomoucCzech Republic
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Xsphera Biosciences Inc.BostonMassachusettsUSA
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and Environment, University of Electronic Science and Technology of ChinaChengduPR China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
| | - Nicolas H. Voelcker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoriaAustralia
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Gorka Orive
- NanoBioCel Research Group, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI(UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- Singapore Eye Research InstituteSingapore
| |
Collapse
|
9
|
Pourmadadi M, Rahmani E, Eshaghi MM, Shamsabadipour A, Ghotekar S, Rahdar A, Romanholo Ferreira LF. Graphitic carbon nitride (g-C3N4) as a new carrier for drug delivery applications: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abasalta M, Zibaseresht R, Yousefi Zoshk M, Foroutan Koudehi M, Irani M, Hami Z. Simultaneous loading of clarithromycin and zinc oxide into the chitosan/gelatin/polyurethane core–shell nanofibers for wound dressing. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Mahdi Abasalta
- Biomaterials and Medicinal Chemistry Research Centre, Aja University of Medical Sciences, Tehran, Iran
| | - Ramin Zibaseresht
- Biomaterials and Medicinal Chemistry Research Centre, Aja University of Medical Sciences, Tehran, Iran
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Nowshahr, Iran
| | | | - Masoumeh Foroutan Koudehi
- Biomaterials and Medicinal Chemistry Research Centre, Aja University of Medical Sciences, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Degradation of Tetracycline Hydrochloride by a Novel CDs/g-C3N4/BiPO4 under Visible-Light Irradiation: Reactivity and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In recent years, with the large-scale use of antibiotics, the pollution of antibiotics in the environment has become increasingly serious and has attracted widespread attention. In this study, a novel CDs/g-C3N4/BiPO4 (CDBPC) composite was successfully synthesized by a hydrothermal method for the removal of the antibiotic tetracycline hydrochloride (TC) in water. The experimental results showed that the synthesized photocatalyst was crystalline rods and cotton balls, accompanied by overlapping layered nanosheet structures, and the specific surface area was as high as 518.50 m2/g. This photocatalyst contains g-C3N4 and bismuth phosphate (BiPO4) phases, as well as abundant surface functional groups such as C=N, C-O, and P-O. When the optimal conditions were pH 4, CDBPC dosage of 1 g/L, and TC concentration of 10 mg/L, the degradation rate of TC reached 75.50%. Active species capture experiments showed that the main active species in this photocatalytic system were holes (h+), hydroxyl radicals, and superoxide anion radicals. The reaction mechanism for the removal of TC by CDBPC was also proposed. The removal of TC was mainly achieved by the synergy between the adsorption of CDBPC and the oxidation of both holes and hydroxyl radicals. In this system, TC was adsorbed on the surface of CDBPC, and then the adsorbed TC was degraded into small molecular products by an attack with holes and hydroxyl radicals and finally mineralized into carbon dioxide and water. This study indicated that this novel photocatalyst CDBPC has a huge potential for antibiotic removal, which provides a new strategy for antibiotic treatment of wastewater.
Collapse
|
12
|
Ghasemzadeh F, Mohammadi M, Najafpour GD, Moghadamnia AA. Ursolic acid loaded β-cyclodextrin/folic acid/Fe3O4 nanocomplex for drug delivery to tumor cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
El‐Naggar SA, El‐Barbary AA, Salama WM, Elkholy HM. Synthesis, characterization, and biological activities of folic acid conjugates with polyvinyl alcohol, chitosan, and cellulose. J Appl Polym Sci 2022. [DOI: 10.1002/app.52250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Wesam M. Salama
- Zoology Department, Faculty of Science Tanta University Tanta Egypt
| | - Hazem M. Elkholy
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
14
|
Leelavathi H, Muralidharan R, Abirami N, Tamizharasan S, Kumarasamy A, Arulmozhi R. Exploration of ZnO decorated g-C3N4 amphiphilic anticancer drugs for antiproliferative activity against human cervical cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Advancements in Fabrication and Application of Chitosan Composites in Implants and Dentistry: A Review. Biomolecules 2022; 12:biom12020155. [PMID: 35204654 PMCID: PMC8961661 DOI: 10.3390/biom12020155] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a biopolymer that is found in nature and is produced from chitin deacetylation. Chitosan has been studied thoroughly for multiple applications with an interdisciplinary approach. Antifungal antibacterial activities, mucoadhesion, non-toxicity, biodegradability, and biocompatibility are some of the unique characteristics of chitosan-based biomaterials. Moreover, chitosan is the only widely-used natural polysaccharide, and it is possible to chemically modify it for different applications and functions. In various fields, chitosan composite and compound manufacturing has acquired much interest in developing several promising products. Chitosan and its derivatives have gained attention universally in biomedical and pharmaceutical industries as a result of their desired characteristics. In the present mini-review, novel methods for preparing chitosan-containing materials for dental and implant engineering applications along with challenges and future perspectives are discussed.
Collapse
|
16
|
Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S. Preparation and applications of chitosan and cellulose composite materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113850. [PMID: 34619590 DOI: 10.1016/j.jenvman.2021.113850] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
18
|
Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr Polym 2021; 273:118631. [PMID: 34561021 DOI: 10.1016/j.carbpol.2021.118631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023]
Abstract
Over the last years, chitosan has demonstrated unparalleled characteristics for regenerative medicine applications. Beside excellent antimicrobial and wound healing properties, this polysaccharide biopolymer offers favorable characteristics such as biocompatibility, biodegradability, and film and fiber-forming capabilities. Having plentiful active amine groups, chitosan can be also readily modified to provide auxiliary features for growing demands in regenerative medicine, which is constantly confronted with new problems, necessitating the creation of biocompatible, immunogenic and biodegradable film/scaffold composites. A new look at the chitosan composites structure/activity/application tradeoff is the primary focus of the current review, which can help researchers to detect the bottlenecks and overcome the shortcomings that arose from this intersection. In the current review, the most recent advances in chitosan films and scaffolds in terms of preparation techniques and modifying methods for improving their functional properties, in three major biomedical fields i.e., tissue engineering, wound healing, and drug delivery are surveyed and discussed.
Collapse
Affiliation(s)
- Farnoush Sadat Rezaei
- Department of Chemical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Amirhossein Esmaeilkhanian
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
19
|
Mishra D, Khare P, Singh DK, Yadav V, Luqman S, Kumar PA, Shanker K. Synthesis of Ocimum extract encapsulated cellulose nanofiber/chitosan composite for improved antioxidant and antibacterial activities. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
21
|
Azerbaijan MH, Bahmani E, Jouybari MH, Hassaniazardaryani A, Goleij P, Akrami M, Irani M. Electrospun gold nanorods/graphene oxide loaded-core-shell nanofibers for local delivery of paclitaxel against lung cancer during photo-chemotherapy method. Eur J Pharm Sci 2021; 164:105914. [PMID: 34146683 DOI: 10.1016/j.ejps.2021.105914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
The combinations of photothermal therapy (PTT) and chemotherapy (CHT) have attracted increasing attention for cancer therapy. In the present study, paclitaxel as an anticancer drug and graphene oxide/gold nanorods (GO/Au NRs) were simultaneously loaded into the poly (tetramethylene ether) glycol based-polyurethane (PTMG-PU) (core)/chitosan (shell) nanofibers prepared by the coaxial electrospinning method. The potential of the synthesized nanofiber as a pH/temperature dual responsive carrier was investigated for the controlled release of paclitaxel against A549 lung cancer during PTT/CHT combined method. The synthesized core-shell nanofibers were characterized using SEM, TEM and XRD analysis. The drug encapsulation efficiency, drug release and kinetic studies were carried out. The compatibility of the synthesized core-shell nanofibers was also investigated. The cell viability of the synthesized nanofibers treated with A549 lung cancer cells was investigated under alone CHT, alone PTT and PTT/CHT method. The in vivo studies indicated that the PTT/CHT method demonstrated an optimal therapeutic effect on tumor inhibition without change in body weight. The obtained results demonstrated that the synthesized core-shell nanofibers would be used for lung cancer treatment under NIR irradiation in the future.
Collapse
Affiliation(s)
| | - Ehsan Bahmani
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Mania Habibi Jouybari
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Irani
- Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
22
|
Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized via air-plasma treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112248. [PMID: 34225887 DOI: 10.1016/j.msec.2021.112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Over the recent years, there is a growing interest in electrospun hybrid scaffolds composed of synthetic and natural polymers that can support cell attachment and proliferation. In this work, the physical and biological properties of polylactic acid (PLA) electrospun mats coated with kefiran (Kef) were evaluated. Gravimetric, spectroscopic (FTIR-ATR) and morphological investigations via scanning electron microscopy confirmed the effective formation of a thin kefiran layer wrapped on the PLA fibers with an easy-tunable thickness. Air plasma pre-treatment carried out on PLA (P-PLA) affected both the morphology and the crystallinity of Kef coating as confirmed by differential scanning calorimetry and X-ray diffraction analyses. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the Kef coating. The water resistance of Kefiran coating in distilled water at 37 °C evaluated on both PLA/Kef and P-PLA/Kef was carried out by gravimetric and morphological analyses. Finally, cell culture assays with embryonic fibroblast cells were conducted on selected hybrid scaffolds to compare the cell proliferation, morphology, and collagen production with PLA and P-PLA electrospun scaffolds. Based on the results, we can demonstrate that direct coating of PLA from Kef/water solutions is an effective approach to prepare hybrid scaffolds with tunable properties and that the plasma pre-treatment enhances the affinity between PLA and Kefiran. In vitro tests demonstrated the great potential of PLA/Kef hybrid scaffolds for skin tissue engineering.
Collapse
|