1
|
Gong J, Ye C, Ran J, Xiong X, Fang X, Zhou X, Yi Y, Lu X, Wang J, Xie C, Liu J. Polydopamine-Mediated Immunomodulatory Patch for Diabetic Periodontal Tissue Regeneration Assisted by Metformin-ZIF System. ACS NANO 2023; 17:16573-16586. [PMID: 37578444 DOI: 10.1021/acsnano.3c02407] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
An essential challenge in diabetic periodontal regeneration is achieving the transition from a hyperglycemic inflammatory microenvironment to a regenerative one. Here, we describe a polydopamine (PDA)-mediated ultralong silk microfiber (PDA-mSF) and metformin (Met)-loaded zeolitic imidazolate framework (ZIF) incorporated into a silk fibroin/gelatin (SG) patch to promote periodontal soft and hard tissue regeneration by regulating the immunomodulatory microenvironment. The PDA-mSF endows the patch with a reactive oxygen species (ROS)-scavenging ability and anti-inflammatory activity, reducing the inflammatory response by suppressing M1 macrophage polarization. Moreover, PDA improves periodontal ligament reconstruction via its cell affinity. Sustained release of Met from the Met-ZIF system confers the patch with antiaging and immunomodulatory abilities by activating M2 macrophage polarization to secrete osteogenesis-related cytokines, while release of Zn2+ also promotes bone regeneration. Consequently, the Met-ZIF system creates a favorable microenvironment for periodontal tissue regeneration. These features synergistically accelerate diabetic periodontal bone and ligament regeneration. Thus, our findings offer a potential therapeutic strategy for hard and soft tissue regeneration in diabetic periodontitis.
Collapse
Affiliation(s)
- Jinglei Gong
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengxinyue Ye
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhui Ran
- Institute of Biomedical Engineering, Haihe Laboratory of Cell Ecosystem, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinyi Fang
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueman Zhou
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiong Lu
- Institute of Biomedical Engineering, Haihe Laboratory of Cell Ecosystem, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, Haihe Laboratory of Cell Ecosystem, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jin Liu
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Translating Material Science into Bone Regenerative Medicine Applications: State-of-The Art Methods and Protocols. Int J Mol Sci 2022; 23:ijms23169493. [PMID: 36012749 PMCID: PMC9409266 DOI: 10.3390/ijms23169493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
In the last 20 years, bone regenerative research has experienced exponential growth thanks to the discovery of new nanomaterials and improved manufacturing technologies that have emerged in the biomedical field. This revolution demands standardization of methods employed for biomaterials characterization in order to achieve comparable, interoperable, and reproducible results. The exploited methods for characterization span from biophysics and biochemical techniques, including microscopy and spectroscopy, functional assays for biological properties, and molecular profiling. This review aims to provide scholars with a rapid handbook collecting multidisciplinary methods for bone substitute R&D and validation, getting sources from an up-to-date and comprehensive examination of the scientific landscape.
Collapse
|
3
|
Li Y, Liu C, Liu W, Cheng X, Zhang A, Zhang S, Liu C, Li N, Jian X. Apatite Formation Induced by Chitosan/Gelatin Hydrogel Coating Anchored on Poly(aryl ether nitrile ketone) Substrates to Promote Osteoblastic Differentiation. Macromol Biosci 2021; 21:e2100262. [PMID: 34449122 DOI: 10.1002/mabi.202100262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Bone-like apatite is a promising coating of poly(ether ether ketone) (PEEK) for bone implantation. Poly(aryl ether nitrile ketone) containing phthalazinone moiety (PPENK) is a novel alternative for its easy synthesis. Here, chitosan/gelatin hybrid hydrogel coating is applied to induce the formation of apatite on the surface of PPENK substrate through biomineralization to improve its biocompatibility and osteogenic property. PPENK possessing allyl groups (PPENK-d) are synthesized and spin-coated on PPENK substrate to impart reactive groups. The hydrogel coating is prepared by the ultraviolet crosslinking of gelatin methacrylate (GelMA) and chitosan methacrylate (CSMA) on PPENK substrate. PPENK-d, GelMA, and CSMA are characterized by 1 H-NMR to confirm the designed structures. The presence of chitosan increases the chelation of calcium ions and thus induces the nucleation of apatite. The microstructural and compositional results reveal that the chitosan-containing hydrogel coating induced apatite coating yields a higher apatite quantity compared to the gelatin hydrogel coating. The apatite coatings on PPENK substrate promote the cytocompatibility and osteogenesis of MC3T3-E1 preosteoblasts in vitro.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Ali Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Nan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Yan D, Zhang S, Yu F, Gong D, Lin J, Yao Q, Fu Y. Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. Carbohydr Polym 2021; 269:118341. [PMID: 34294349 DOI: 10.1016/j.carbpol.2021.118341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
The rehabilitation of visual acuity with severe conjunctival fibrosis depends on ocular reconstruction with suitable conjunctival substitutes. In this study, we have developed poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) surface coated by cellulose nanofibrils (CNF) and/or silk peptide (SP). The CNF coating improved the hydrophilicity and the SP coating proliferated conjunctival epithelial cells (CjECs). To prevent post-operative infections, the composite scaffolds were loaded with levofloxacin (LF), constantly exerting efficient bactericidal effects. In in vivo evaluations, the PLA EFMs presented excellent therapeutic effects by promoting structural and functional restoration of conjunctiva after transplant. Even with reduced topical administration of antibiotics, the coloboma treated with LF loaded scaffolds presented no infections. It could be deduced that the potent bacterial inhibition feature could save troubles for patients by minimizing the application of antibiotics post-surgery. Hence, the developed PLA EFMs loaded with LF could be promising conjunctival substitutes.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|