1
|
Ma R, Gao X, Jin Y, Wang X, Li R, Qiao R, Wang X, Liu D, Xie Z, Wang L, Zhang J, Xu W, Hu Y. Is there a duration-characteristic relationship for trypsin exposure on tendon? A study on anterior cruciate ligament reconstruction in a rabbit model. Front Med (Lausanne) 2024; 11:1417930. [PMID: 39234049 PMCID: PMC11371708 DOI: 10.3389/fmed.2024.1417930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background Decellularized allograft tendons are highly regarded for their accessibility and the reduced risk of immune rejection, making them a promising choice for grafting due to their favorable characteristics. However, effectively integrating reconstructed tendons with host bone remains a significant clinical challenge. Purpose This study aims to investigate the relationship between the duration of tendon exposure to trypsin and its impact on tendon biomechanical properties and healing capacity. Methods Morphological assessments and biochemical quantifications were conducted. Allograft tendons underwent heterotopic transplantation into the anterior cruciate ligament (ACL) in a rabbit model, with specimens harvested 6 weeks post-surgery for a comparative analysis of cell adhesion strength and mechanical performance. Duration-response curves were constructed using maximum stress and cell adhesion quantity as primary indicators. Results The trypsin treatment enhanced cell adhesion on the tendon surface. Adhesion rates in the control group vs. the experimental groups were as follows: 3.10 ± 0.56% vs. 4.59 ± 1.51%, 5.36 ± 1.24%, 6.12 ± 1.98%, and 8.27 ± 2.34% (F = 6.755, p = 0.001). However, increasing treatment duration led to a decline in mechanical properties, with the ultimate load (N) in the control vs. experimental groups reported as 103.30 ± 10.51 vs. 99.59 ± 4.37, 93.15 ± 12.38, 90.42 ± 7.87, and 82.68 ± 6.89, F = 4.125 (p = 0.013). Conclusion The findings reveal an increasing trend in adhesion effectiveness with prolonged exposure duration, while mechanical strength declines. The selection of the optimal processing duration should involve careful consideration of the benefits derived from both outcomes.
Collapse
Affiliation(s)
- Rongxing Ma
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaokang Gao
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yangyang Jin
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaolong Wang
- The People's Hospital of Chengyang Qingdao, Qingdao, Shandong, China
| | - Ruifeng Li
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Ruiqi Qiao
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Xinliang Wang
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Dayong Liu
- Department of Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Zhitao Xie
- Department of Orthopedics, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Limin Wang
- Beijing Wonderful Medical Biomaterials Co., Ltd., Beijing, China
| | - Jingyu Zhang
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Weiguo Xu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yongcheng Hu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review. Int J Biol Macromol 2024; 254:127891. [PMID: 37931866 DOI: 10.1016/j.ijbiomac.2023.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Tissue engineering (TE) has become a primary research topic for the treatment of diseased or damaged tendon/ligament (T/L) tissue. T/L injuries pose a severe clinical burden worldwide, necessitating the development of effective strategies for T/L repair and tissue regeneration. TE has emerged as a promising strategy for restoring T/L function using decellularized extracellular matrix (dECM)-based scaffolds. dECM scaffolds have gained significant prominence because of their native structure, relatively high bioactivity, low immunogenicity, and ability to function as scaffolds for cell attachment, proliferation, and differentiation, which are difficult to imitate using synthetic materials. Here, we review the recent advances and possible future prospects for the advancement of dECM scaffolds for T/L tissue regeneration. We focus on crucial scaffold properties and functions, as well as various engineering strategies employed for biomaterial design in T/L regeneration. dECM provides both the physical and mechanical microenvironments required by cells to survive and proliferate. Various decellularization methods and sources of allogeneic and xenogeneic dECM in T/L repair and regeneration are critically discussed. Additionally, dECM hydrogels, bio-inks in 3D bioprinting, and nanofibers are briefly explored. Understanding the opportunities and challenges associated with dECM-based scaffold development is crucial for advancing T/L repairs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mohammad Saeed
- Dr. A.P.J Abdul Kalam Technical University, Lucknow 226031, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Data K, Kulus M, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Decellularization of Dense Regular Connective Tissue-Cellular and Molecular Modification with Applications in Regenerative Medicine. Cells 2023; 12:2293. [PMID: 37759515 PMCID: PMC10528602 DOI: 10.3390/cells12182293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
4
|
Yuan B, Tang YF, Xu Z, Wang JC, Zhou SY, Chen XS. Lyophilized bovine acellular tendon linear fiber material for the reconstruction of attachment structure of paraspinous muscles: an animal in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:79. [PMID: 36462052 PMCID: PMC9719447 DOI: 10.1007/s10856-022-06701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Low back pain is common after lumbar spine surgery and the injury from extensive detachment of paraspinal muscles during the surgery may play a vital role. Previously, we prepared a bovine acellular tendon fiber (ATF) material through lyophilization and proved that it could retain its original fibrillar structure and mechanical properties. The objective of this study is to evaluate the effectiveness of this new fiber material used for attachment structure reconstruction of paraspinal muscle. Defect of spinous process, interspinous and supraspinous ligament was established on lumbar spine in rabbit and rat and ATF linear material was implanted to reconstruct the attachment structure. Ultrasound showed the cross-sectional area of the paraspinal muscle in ATF group was larger than that of control group in rats. MRI showed the irregular shape and high signal changes in control group, but regular shape and uniform signal in the ATF group in rabbit. For Electromyogram, the frequency of evoked potential in control group was lower than ATF group and normal rats. HE and Masson staining showed good tissue healing, and immunohistochemical results showed the immune rejection of ATF is significantly lower than that of suture. Reconstruction of the attachment structure of paraspinous muscles with ATF linear material could maintain the morphology, volume and function of paraspinal muscle. ATF material has the potential to be used to manufacture personalized ligaments and other tissue engineering scaffolds. Graphical abstract.
Collapse
Affiliation(s)
- Bo Yuan
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yi-Fan Tang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Zheng Xu
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Jun-Cheng Wang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Sheng-Yuan Zhou
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Xiong-Sheng Chen
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| |
Collapse
|
5
|
Al-Hakim Khalak F, García-Villén F, Ruiz-Alonso S, Pedraz JL, Saenz-del-Burgo L. Decellularized Extracellular Matrix-Based Bioinks for Tendon Regeneration in Three-Dimensional Bioprinting. Int J Mol Sci 2022; 23:12930. [PMID: 36361719 PMCID: PMC9657326 DOI: 10.3390/ijms232112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2023] Open
Abstract
In the last few years, attempts to improve the regeneration of damaged tendons have been rising due to the growing demand. However, current treatments to restore the original performance of the tissue focus on the usage of grafts; although, actual grafts are deficient because they often cannot provide enough support for tissue regeneration, leading to additional complications. The beneficial effect of combining 3D bioprinting and dECM as a novel bioink biomaterial has recently been described. Tendon dECMs have been obtained by using either chemical, biological, or/and physical treatments. Although decellularization protocols are not yet standardized, recently, different protocols have been published. New therapeutic approaches embrace the use of dECM in bioinks for 3D bioprinting, as it has shown promising results in mimicking the composition and the structure of the tissue. However, major obstacles include the poor structural integrity and slow gelation properties of dECM bioinks. Moreover, printing parameters such as speed and temperature have to be optimized for each dECM bioink. Here, we show that dECM bioink for 3D bioprinting provides a promising approach for tendon regeneration for future clinical applications.
Collapse
Affiliation(s)
- Fouad Al-Hakim Khalak
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Zhou SY, Yuan B, Huang WM, Chen XS, Jia LS. Aponeurosis discission, a low-detergent method for tissue-engineered acellular ligament scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:40. [PMID: 35507049 PMCID: PMC9068632 DOI: 10.1007/s10856-022-06661-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Detergent treatment is the most commonly used method for the decellularization of ligaments and tendon grafts. However, it is well recognized that detergent treatment can also adversely affect the extracellular matrix. This study found that discission into the aponeurosis layer of the patellar tendon (PT) before decellularization is conducive to extracting cells from the PT using a low quantity of detergent in a short time period. The acellular aponeurosis discission ligament (AADL) retains its native collagen fibril structure and mechanical properties. Moreover, the PT retained cell and tissue compatibility in vitro and in vivo. After implantation into a defective allogeneic PT, we found that the AADL healed well in the host, and its collagen structure exhibited gradual improvement 12 months after implantation with satisfactory reconstruction. IMPACT: The aponeurosis of tendons/ligaments is the main barrier to achieving complete decellularization, and it thus prevents complete recellularization for applications in tissue engineering. Aponeurosis can obstruct the removal of cell components. We found that excising the aponeurosis before decellularization allows for the removal of cellular components with a reduced amount of detergent, thus improving the biological properties of the acellular ligament. To the best of our knowledge, no similar studies have been performed. Graphical abstract.
Collapse
Affiliation(s)
- Sheng-Yuan Zhou
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Bo Yuan
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Wen-Mao Huang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Xiong-Sheng Chen
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Lian-Shun Jia
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| |
Collapse
|