1
|
Wang LT, Juang SE, Chang HH, He AC, Chen WA, Huang YW, Van Dyke TE, Ma KSK, Chen YW. Single-cell analysis of peri-implant gingival tissue to assess implant biocompatibility and immune response. J Prosthodont Res 2025; 69:97-109. [PMID: 39231696 DOI: 10.2186/jpr.jpr_d_23_00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE The innate immune response, particularly the reaction of polymorphonuclear neutrophils (PMNs), is crucial in shaping the outcomes of chronic inflammation, fibrosis, or osseointegration following biomaterial implantation. Peri-implantitis or peri-implant mucositis, inflammatory conditions linked to dental implants, pose a significant threat to implant success. We developed a single-cell analysis approach using a murine model to assess the immune response to implant materials, offering a practical screening tool for potential dental implants. METHODS We performed bioinformatics analysis and established a peri-implant inflammation model by inserting two titanium implants into the maxillary region, to examine the immune response. RESULTS Bioinformatics analysis revealed that titanium implants triggered a host immune response, primarily mediated by PMNs. In the in vivo experiments, we observed a rapid PMN-mediated response, with increased infiltration around the implants and on the implant surface by day 3. Remarkably, PMN attachment to the implants persisted for 7 days, resembling the immune profiles seen in human implant-mediated inflammation. CONCLUSIONS Our findings indicate that persistent attachment of the short-living PMNs to titanium implants can serve as an indicator or traits of peri-implant inflammation. Therefore, analyzing gingival tissue at the single-cell level could be a useful tool for evaluating the biocompatibility of candidate dental implants.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sin-Ei Juang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Hao Chang
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ai-Chia He
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-An Chen
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Department of Orthodontics and Dentofacial Orthopedics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Rogala A, Zaytseva-Zotova D, Oreja E, Barrantes A, Tiainen H. Combining QCM-D with live-cell imaging reveals the impact of serum proteins on the dynamics of fibroblast adhesion on tannic acid-functionalised surfaces. Biomater Sci 2024; 12:3345-3359. [PMID: 38767599 DOI: 10.1039/d4bm00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Nanocoatings based on plant polyphenols have been recently suggested as a potent strategy for modification of implant surfaces for enhancing host cell attachment and reducing bacterial colonisation. In this study we aimed to investigate how serum proteins impact the early adhesion dynamics of human gingival fibroblasts onto titanium surfaces coated with tannic acid (TA). Silicate-TA nanocoatings were formed on titanium and pre-conditioned in medium supplemented with 0, 0.1, 1 or 10% FBS for 1 hour. Dynamics of fibroblasts adhesion was studied using quartz crystal microbalance with dissipation (QCM-D). Time-lapse imaging was employed to assess cell area and motility, while immunofluorescence microscopy was used to examine cell morphology and focal adhesion formation. Our results showed that in serum-free medium, fibroblasts demonstrated enhanced and faster adhesion to TA coatings compared to uncoated titanium. Increasing the serum concentration reduced cell adhesion to nanocoatings, resulting in nearly complete inhibition at 10% FBS. This inhibition was not observed for uncoated titanium at 10% FBS, although cell adhesion was delayed and progressed slower compared to serum-free conditions. In addition, 1% FBS dramatically reduced cell adhesion on uncoated titanium. We revealed a positive relationship between changes in dissipation and changes in cell spreading area, and a negative relationship between dissipation and cell motility. In conclusion, our study demonstrated that serum decreases fibroblasts interaction with surfaces coated with TA in a concentration dependent manner. This suggests that controlling serum concentration can be used to regulate or potentially prevent fibroblasts adhesion onto TA-coated titanium surfaces.
Collapse
Affiliation(s)
- Agnes Rogala
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Daria Zaytseva-Zotova
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Enrique Oreja
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Alejandro Barrantes
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
3
|
Liang Z, Chen Z, Zhu Z, Zhang Y, Niu W, Tan S, Wong HM, Li X, Li Q, Qiu H. Colloidal Phenol-Amine Coating on Implants for Improved Anti-Inflammation and Osteogenesis. ACS Biomater Sci Eng 2024; 10:365-376. [PMID: 38118128 DOI: 10.1021/acsbiomaterials.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Phenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge. In this study, we use a macromolecular phenol-amine, Tanfloc, to form a stable colloid under neutral conditions, which was then rapidly adsorbed on the titanium surface by electrostatic action and then spread and fused to form a continuous coating within several minutes. This nonchemical preparation process was rapid, mild, and free of chemical additives. The in vitro and in vivo results showed that the Tanfloc colloid fusion coating inhibited destructive inflammation, promoted osteogenesis, and enhanced osteointegration. These remarkable advantages of the colloidal phenol-amine fusion coating highlight the suitability of its future application in clinical practice.
Collapse
Affiliation(s)
- ZhaoJia Liang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZiRui Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZhongQing Zhu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - YaBing Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - WeiRui Niu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shuang Tan
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - XiangYang Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - QuanLi Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Hua Qiu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
4
|
Weber F, Dornelas-Figueira LM, Hafiane N, Zaytseva-Zotova D, Barrantes A, Petersen FC, Tiainen H. Can polyphenolic surface modifications prevent fungal colonization of titanium dental implants? Colloids Surf B Biointerfaces 2022; 219:112813. [PMID: 36084512 DOI: 10.1016/j.colsurfb.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Oral biofilms can be a major health problem causing infections and chronic inflammation of mucosal tissue. While much effort is put in the investigation of bacteria in biofilms, the role of fungi is often neglected, despite Candida albicans playing a key role in the formation of multispecies oral biofilms. With the rise of antibiotic resistance, new strategies to reduce microbial growth need to be found. Therefore, plant derived polyphenolic molecules have been suggested to reduce both adhesion and growth of pathogenic bacteria and fungi. In this study, we investigated the use of polyphenolic coatings to reduce adhesion and biofilm formation of C. albicans BWP17 on titanium implants. Tannic acid and pyrogallol coatings altered the hydrophobic and charge properties of titanium surfaces, and both compounds were gradually released as active molecules over time. Despite such effects, we found no significant inhibition on growth and biofilm formation of C. Albicans, indicating that the release of active molecules from the coatings did not reach relevant inhibitory concentrations. However, a potential antibiofilm effect was observed by the pH-dependent disassembly of the polyphenolic layer, which caused the biofilm to detach. Hence, further efforts are required to create tailored implant surfaces, which sustainably reduce microbial growth and adhesion.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Nora Hafiane
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway; Department of Materials Science, ENSIL-ENSCI, Université de Limoges, France
| | - Daria Zaytseva-Zotova
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Alejandro Barrantes
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway.
| |
Collapse
|