1
|
Cui Z, Guo FY, Li L, Lu F, Jin CH, Wang X, Liu F. Brazilin-7-acetate, a novel potential drug of Parkinson's disease, hinders the formation of α-synuclein fibril, mitigates cytotoxicity, and decreases oxidative stress. Eur J Med Chem 2024; 264:115965. [PMID: 38056304 DOI: 10.1016/j.ejmech.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the accumulation of α-synuclein (α-Syn) aggregates. However, there are currently no effective therapies for PD. Brazilin, an inhibitor of α-Syn aggregation, is unstable and toxic. Therefore, we have developed and synthesized derivatives of brazilin. One of these derivatives, called brazilin-7-acetate (B-7-A), has shown reduced toxicity and a stronger effect on inhibiting α-Syn aggregation. It showed that B-7-A prevented the formation of α-Syn fibers and disrupted existing fibers in a dosage-dependent manner. Additionally, B-7-A significantly reduced the cytotoxicity of α-Syn aggregates and alleviated oxidative stress in PC12 cells. The beneficial effects of B-7-A were also confirmed using the Caenorhabditis elegans model. These effects included preventing the accumulation of α-Syn clumps, improving behavior disorder, increasing lifespan, reducing oxidative stress, and protecting against lipid oxidation and loss. Finally, B-7-A showed good ADMET properties in silico. Based on these findings, B-7-A exhibits potential as a prospective treatment for PD.
Collapse
Affiliation(s)
- Zhan Cui
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
| | - Fang-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Li Li
- College of Science, Tianjin University of Science & Technology, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.
| | - Xiangming Wang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China.
| |
Collapse
|
2
|
Khan MA, Delgado AH, Young AM. Modifying dental composites to formulate novel methacrylate-based bone cements with improved polymerisation kinetics, and mechanical properties. Dent Mater 2023; 39:1067-1075. [PMID: 37821331 DOI: 10.1016/j.dental.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES The aim was to develop bone composites with similar working times, faster polymerisation and higher final conversion in comparison to Cortoss™. Additionally, low shrinkage/heat generation and improved short and longer-term mechanical properties are desirable. METHODS Four urethane dimethacrylate based composites were prepared using tri-ethylene-glycol dimethacrylate (TEGDMA) or polypropylene dimethacrylate (PPGDMA) diluent and 0 or 20 wt% fibres in the glass filler particles. FTIR was used to determine reaction kinetics, final degrees of conversions, and polymerisation shrinkage/heat generation at 37 °C. Biaxial flexural strength, Young's modulus and compressive strength were evaluated after 1 or 30 days in water. RESULTS Experimental materials all had similar inhibition times to Cortoss™ (140 s) but subsequent maximum polymerisation rate was more than doubled. Average experimental composite final conversion (76%) was higher than that of Cortoss™ (58%) but with less heat generation and shrinkage. Replacement of TEGDMA by PPGDMA gave higher polymerisation rates and conversions while reducing shrinkage. Early and aged flexural strengths of Cortoss™ were 93 and 45 MPa respectively. Corresponding compressive strengths were 164 and 99 MPa. Early and lagged experimental composite flexural strengths were 164-186 and 240-274 MPa whilst compressive strengths were 240-274 MPa and 226-261 MPa. Young's modulus for Cortoss™ was 3.3 and 2.2 GPa at 1 day and 1 month. Experimental material values were 3.4-4.8 and 3.0-4.1 GPa, respectively. PPGDMA and fibres marginally reduced strength but caused greater reduction in modulus. Fibres also made the composites quasi-ductile instead of brittle. SIGNIFICANCE The improved setting and higher strengths of the experimental materials compared to Cortoss™, could reduce monomer leakage from the injection site and material fracture, respectively. Lowering modulus may reduce stress shielding whilst quasi-ductile properties may improve fracture tolerance. The modified dental composites could therefore be a promising approach for future bone cements.
Collapse
Affiliation(s)
- Muhammad Adnan Khan
- Dental Materials Department, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - António Hs Delgado
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, Almada, Portugal.
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
3
|
Sanus GZ, Kucukyuruk B, Biceroglu H, Isler C, Tanriverdi T, Bas A, Albayram S, Kurkcu M, Oz B. Osteointegration of a bisphenol-a-glycidyl-dimethacrylate composite and its use in anterior skull base defects: an experimental study in an experimental design model of cerebrospinal fluid leak. J Craniofac Surg 2015; 25:1524-8. [PMID: 24914756 DOI: 10.1097/scs.0000000000000962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECT Promising clinical results were reported in watertight closure of anterior skull base defects (ASBDs) with bisphenol-a-glycidyl-dimethacrylate (bis-GMA)-based materials to prevent the cerebrospinal fluid leaks. However, interrelation of these materials with surrounding bones in histologic level, referred to as the osteointegration, has not been reported in the anterior skull base. In addition, an illustrative case with an ASBD that was repaired using a bis-GMA composite has been presented. METHODS Twenty New Zealand rabbits were divided into 4 groups: control and sham groups consisted of 2 and 6 rabbits, respectively. The "skull base defect" group (n = 6) underwent a unifrontal craniectomy and an iatrogenic ASBD followed by creating a dural defect to obtain a cerebrospinal fluid leak. Similar bony and dural defects were acquired in the "repair with bis-GMA based allograft" group (n = 6), but the bony defect was closed with bis-GMA-based allograft. RESULTS All animals in the "skull base defect" group died in 3 weeks after surgery. There were no animal losses in the "repair with bis-GMA based allograft" group at the sixth month. Histologic evaluation revealed complete osteointegration of bis-GMA composite with surrounding bones. CONCLUSIONS bis-GMA based allograft achieved a watertight repair of the ASBD. Histologic findings of this study showed that bis-GMA composite is a reliable material to be used in the closure of anterior skull base bony defects.
Collapse
Affiliation(s)
- Galip Zihni Sanus
- From the *Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey; †Department of Neurosurgery, State Hospital of Ahi Evran University, Kirsehir, Turkey; ‡Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey; §Department of Oral and Maxillofacial Surgery, Cukurova University, Adana, Turkey; and ∥Department of Pathology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yimin Y, Zhiwei R, Wei M, Jha R. Current status of percutaneous vertebroplasty and percutaneous kyphoplasty--a review. Med Sci Monit 2013; 19:826-36. [PMID: 24097261 PMCID: PMC3795017 DOI: 10.12659/msm.889479] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/27/2013] [Indexed: 12/27/2022] Open
Abstract
Percutaneous vertebroplasty (PV) and kyphoplasty (PK) are the 2vertebral augmentation procedures that have emerged as minimally invasive surgical options to treat painful vertebral compression fractures (VCF) during the last 2 decades. VCF may either be osteoporotic or tumor-associated. Two hundred million women are affected by osteoporosis globally. Vertebral fracture may result in acute pain around the fracture site, loss of vertebral height due to vertebral collapse, spinal instability, and kyphotic deformity. The main goal of the PV and PK procedures is to give immediate pain relief to patients and restore the vertebral height lost due to fracture. In percutaneous vertebroplasty, bone cement is injected through a minimal incision into the fractured site. Kyphoplasty involves insertion of a balloon into the fractured site, followed by inflation-deflation to create a cavity into which the filler material is injected, and the balloon is taken out prior to cement injection. This literature review presents a qualitative overview on the current status of vertebral augmentation procedures,especially PV and PK, and compares the efficacy and safety of these 2 procedures. The review consists of a brief history of the development of these 2 techniques, a discussion on the current research on the bone cement, clinical outcome of the 2 procedures, and it also sheds light on ongoing and future research to maximize the efficacy and safety of vertebral augmentation procedures.
Collapse
Affiliation(s)
- Yang Yimin
- Department of Orthopedics, The First Affiliated Hospital of Medical College of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Ren Zhiwei
- Department of Orthopedics, The First Affiliated Hospital of Medical College of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Ma Wei
- Department of Orthopedics, The First Affiliated Hospital of Medical College of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Rajiv Jha
- Department of Orthopedics, The First Affiliated Hospital of Medical College of Xian Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Zhang B, Dai M. Filler Materials Used in Kyphoplasty and Vertebroplasty for Osteoporotic Vertebral Compression Fractures. ADVANCED MATERIALS RESEARCH 2011; 393-395:766-771. [DOI: 10.4028/www.scientific.net/amr.393-395.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Osteoporosis is the most common metabolic bone disease and the most common cause of fractures in older adults. Vertebral compression fracture (VCF) is the most common complication in patients with osteoporosis. At present, vertebroplasty (VP) and kyphoplasty (KP) are two minimally invasive techniques used to treat osteoporotic vertebral compression fractures. In clinical use, KP and VP have stable and reliable therapeutic effects. However, there are still some complications and issues surrounding KP and VP application, and for long-term clinical follow-up. Thus, it is important to continue to improve the technology of the filler materials used in KP and VP in order to evolve the biomechanical characteristics of the postoperative vertebra, and to reduce the incidence of complications. The filler materials used for both techniques require good biocompatibility, good biomechanical strength and stiffness, and good radiopacity for the fluoroscopy guided procedures. PMMA and new filler materials (calcium phosphate cement, calcium sulfate cement, composite materials) are now available for clinical use. In this review paper, we will focus on the issues and characteristics of these filler materials.
Collapse
|
6
|
Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater 2011; 7:739-50. [PMID: 20688196 DOI: 10.1016/j.actbio.2010.07.035] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/28/2023]
Abstract
Autologous bone grafting is currently considered as the gold standard to restore bone defects. However, clinical benefit is not guaranteed and there is an associated 8-39% complication rate. This has resulted in the development of alternative (synthetic) bone substitutes. The aim of this systematic literature review was to provide a comprehensive overview of literature data of bone substitutes registered in the Netherlands for use in trauma and orthopedic surgery. Brand names of selected products were used as search terms in three available databases: Embase, PubMed and Cochrane. Manuscripts written in English, German or Dutch that reported on structural, biological or biomechanical properties of the pure product or on its use in trauma and orthopedic surgery were included. The primary search resulted in 475 manuscripts from PubMed, 653 from Embase and 10 from Cochrane. Of these, 218 met the final inclusion criteria. Of each product, structural, biological and biomechanical characteristics as well as their clinical indications in trauma and orthopedic surgery are provided. All included products possess osteoconductive properties but differ in resorption time and biomechanical properties. They have been used for a wide range of clinical applications; however, the overall level of clinical evidence is low. The requirements of an optimal bone substitute are related to the size and location of the defect. Calcium phosphate grafts have been used for most trauma and orthopedic surgery procedures. Calcium sulphates were mainly used to restore bone defects after tumour resection surgery but offer minimal structural support. Bioactive glass remains a potential alternative; however, its use has only been studied to a limited extent.
Collapse
|
7
|
Ghuneim WA. In Situ Tooth Replica Custom Implant: Rationale, Material, and Technique. J ORAL IMPLANTOL 2010; 36:435-50. [DOI: 10.1563/aaid-joi-d-09-00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
This study introduced a new concept of an in situ, custom-made, tooth replica dental implant. It was obtained by injecting a self-set, nonresorbable polymer type bone graft substitute into the tooth socket after extraction. Based on its cited properties, new composite bone cement Cortoss was suggested. The properties were reviewed and evaluated. The technique of application was described with a simulation model presented that appeared simple. Apparently, immediate duplication of tooth anatomy was achieved; thus, the concept might have the potentials of spontaneous adaptation and stabilization, preservation of alveolar bone, increasing implant-bone surface area, better load distribution, and bone stimulation. Modifications were also described to manage cases of resorbed alveolar bone as well as long-standing extracted teeth. Investigations were still required to assess the performance of the material and if modifications would be needed.
Collapse
|
8
|
Sanus GZ, Tanriverdi T, Ulu MO, Kafadar AM, Tanriover N, Ozlen F. Use of Cortoss as an alternative material in calvarial defects: the first clinical results in cranioplasty. J Craniofac Surg 2008; 19:88-95. [PMID: 18216670 DOI: 10.1097/scs.0b013e31815c93fe] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A clinical series of 13 patients who underwent cranioplasty using a new quick setting material, namely Cortoss, was done over 3-year period. Thus, the primary objective of this study is to evaluate the role of Cortoss in the treatment calvarial defects which were mainly due to trauma (4 patients), tumor or tumor-like lesions (5 patients), middle cerebral infarction (3 patients), and gun shot wound (1 patient). The surgical technique was found to be simple and effective. Long-term follow-up (mean 24.3 months) demonstrated satisfactory results in terms of surgical (functional) and cosmetic outcomes. None of the patients developed complications including infections, foreign body reactions or material leakage. The results led us to suggest that the use of Cortoss in the case of calvarial defects seems to be safe, effective, quick, and a feasible method for cranioplasty. We conclude that the mechanical, immunologic, and technical-grafting properties of Cortoss, together with its superior esthetic and psychological effects, probably will make it the best material for cranioplasty.
Collapse
Affiliation(s)
- Galip Zihni Sanus
- Department of Neurosurgery, Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
9
|
Li ZY, Yang C, Lu WW, Xu B, Lam WM, Ni GX, Abbah SA, Yang F, Cheung KMC, Luk KDK. Characteristics and mechanical properties of acrylolpamidronate-treated strontium containing bioactive bone cement. J Biomed Mater Res B Appl Biomater 2007; 83:464-71. [PMID: 17415774 DOI: 10.1002/jbm.b.30818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to determine the influence of surface treatment on the mechanical properties of strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement. Previously we developed an injectable bioactive cement (SrHAC) system composed of Sr-HA powders and bisphenol A diglycidylether dimethacrylate (Bis-GMA). In this study, the Sr-HA powder was subjected to surface treatment using acrylolpamidronate, a bisphosphonate derivative, which has a polymerizable group, to improve the interface between inorganic filler and organic matrix by binding Sr-HA and copolymerizing into the matrix. After surface treatment, the compression strength, bending strength, and stiffness of the resulting composites were defined by using a material testing machine (MTS) according to ISO 5833. The fracture surface of the bone cement specimen was observed with a scanning electron microscope. Invitro cytotoxicity of surface-treated SrHAC was also studied using a tetrazolium-based cell viability assay (MTS/pms) on human osteoblast-like cells, the SaOS-2 cell line. Cells were seeded at a density of 10(4)/mL and allowed to grow in an incubator for 48 h at 37 degrees C. Results indicated that after surface treatment, the compression strength and stiffness significantly improved by 22.68 and 14.51%, respectively. The bending strength and stiffness of the bioactive bone cement also showed 19.06 and 8.91% improvements via three-point bending test. The fracture surface micromorphology after compression and bending revealed that the bonding between the resin to surface-treated filler considerably improved. The cell viability indicated that the treated particles were nontoxic and did not inhibit cell growth. This study demonstrated a new surface chemistry route to enhance the covalent bonds between inorganic fillers and polymer matrix for improving the mechanical properties of bone cement. This method not only improves the overall mechanical performance but also increases osteoblastic activity.
Collapse
Affiliation(s)
- Z Y Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|