1
|
Andze L, Nefjodovs V, Andzs M, Skute M, Zoldners J, Kapickis M, Dubnika A, Locs J, Vetra J. Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants. J Funct Biomater 2024; 15:287. [PMID: 39452586 PMCID: PMC11508927 DOI: 10.3390/jfb15100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol-water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material's shape stability, water resistance, and reduced swelling.
Collapse
Affiliation(s)
- Laura Andze
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (M.A.); (M.S.); (J.Z.)
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; (V.N.); (J.V.)
| | - Vadims Nefjodovs
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; (V.N.); (J.V.)
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia;
| | - Martins Andzs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (M.A.); (M.S.); (J.Z.)
| | - Marite Skute
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (M.A.); (M.S.); (J.Z.)
| | - Juris Zoldners
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (M.A.); (M.S.); (J.Z.)
| | - Martins Kapickis
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia;
| | - Arita Dubnika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Pulka Street 3, LV-1048 Riga, Latvia; (A.D.); (J.L.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Pulka Street 3, LV-1048 Riga, Latvia; (A.D.); (J.L.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia
| | - Janis Vetra
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; (V.N.); (J.V.)
| |
Collapse
|
2
|
Sun T, Chen C, Liu K, Li L, Zhang R, Wen W, Ding S, Liu M, Zhou C, Luo B. A Wood-Derived Periosteum for Spatiotemporal Drug Release: Boosting Bone Repair through Anisotropic Structure and Multiple Functions. Adv Healthc Mater 2024; 13:e2400707. [PMID: 38563114 DOI: 10.1002/adhm.202400707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Existing artificial periostea face many challenges, including difficult-to-replicate anisotropy in mechanics and structure, poor tissue adhesion, and neglected synergistic angiogenesis and osteogenesis. Here, inspired by natural wood (NW), a wood-derived elastic artificial periosteum is developed to mimic the structure and functions of natural periosteum, which combines an elastic wood (EW) skeleton, a polydopamine (PDA) binder layer, and layer-by-layer (LBL) biofunctional layers. Specifically, EW derived from NW is utilized as the anisotropic skeleton of artificial periosteum to guide cell directional behaviors, moreover, it also shows a similar elastic modulus and flexibility to natural periosteum. To further enhance its synergistic angiogenesis and osteogenesis, surface LBL biofunctional layers are designed to serve as spatiotemporal release platforms to achieve sequential and long-term release of pamidronate disodium (PDS) and deferoxamine (DFO), which are pre-encapsulated in chitosan (CS) and hyaluronic acid (HA) solutions, respectively. Furthermore, the combined effect of PDA coating and LBL biofunctional layers enables the periosteum to tightly adhere to damaged bone tissue. More importantly, this novel artificial periosteum can boost angiogenesis and bone formation in vitro and in vivo. This study opens up a new path for biomimetic design of artificial periosteum, and provides a feasible clinical strategy for bone repair.
Collapse
Affiliation(s)
- Tianyi Sun
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunhua Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Ruixi Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| |
Collapse
|
3
|
Nefjodovs V, Andze L, Andzs M, Filipova I, Tupciauskas R, Vecbiskena L, Kapickis M. Wood as Possible Renewable Material for Bone Implants-Literature Review. J Funct Biomater 2023; 14:266. [PMID: 37233376 PMCID: PMC10219062 DOI: 10.3390/jfb14050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Bone fractures and bone defects affect millions of people every year. Metal implants for bone fracture fixation and autologous bone for defect reconstruction are used extensively in treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials are being researched to improve existing practice. Wood as a biomaterial for bone repair has not been considered until the last 50 years. Even nowadays there is not much research on solid wood as a biomaterial in bone implants. A few species of wood have been investigated. Different techniques of wood preparation have been proposed. Simple pre-treatments such as boiling in water or preheating of ash, birch and juniper woods have been used initially. Later researchers have tried using carbonized wood and wood derived cellulose scaffold. Manufacturing implants from carbonized wood and cellulose requires more extensive wood processing-heat above 800 °C and chemicals to extract cellulose. Carbonized wood and cellulose scaffolds can be combined with other materials, such as silicon carbide, hydroxyapatite, and bioactive glass to improve biocompatibility and mechanical durability. Throughout the publications wood implants have provided good biocompatibility and osteoconductivity thanks to wood's porous structure.
Collapse
Affiliation(s)
- Vadims Nefjodovs
- Faculty of Residency, Riga Stradins University, Dzirciema iela 16, LV-1007 Riga, Latvia
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| | - Laura Andze
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Andzs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Inese Filipova
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Ramunas Tupciauskas
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Linda Vecbiskena
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Kapickis
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| |
Collapse
|
4
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
5
|
Siddiqui HA, Pickering KL, Mucalo MR. Study of biomorphic calcium deficient hydroxyapatite fibres derived from a natural Harakeke( Phormium tenax) leaf fibre template. BIOINSPIRATION & BIOMIMETICS 2020; 16:016015. [PMID: 32987371 DOI: 10.1088/1748-3190/abbc64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The complex structure of natural bio-organic matter has inspired scientists to utilise these as templates to design 'biomorphic materials', which retain the intricate architecture of the materials while acting as a useful bioactive material. Biomorphic hydroxyapatite-based fibres were synthesised usingHarakekeleaf fibre as a template, which constitutes a powerful method for manufacturing bioactive ceramic fibres. Furthermore, in creating the hydroxyapatite-based fibres, a natural source of calcium and phosphate ions (from bovine bone) was utilised to create the digest solution in which the leaf fibres were immersed prior to their calcination to form the inorganic fibres. Chemical, thermogravimetric and microscopic characterisation confirmed that the final product was able to successfully replicate the shape of the fibres and furthermore be transformed into calcium deficient, bone-like hydroxyapatite.
Collapse
Affiliation(s)
- Humair A Siddiqui
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand
- Department of Materials Engineering, Faculty of Chemical & Process Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Kim L Pickering
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Michael R Mucalo
- School of Science, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|
6
|
Park JS, Park KH. Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded in PLGA microspheres. Biomater Res 2016; 20:4. [PMID: 26893909 PMCID: PMC4758155 DOI: 10.1186/s40824-016-0051-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Biodegradable microspheres fabricated from poly (Lactic-co-glycolic acid) (PLGA) have attracted considerable attention in the bone tissue regeneration field. In this study, rabbit mesenchymal stem cells (rMSCs) adherent to PLGA microspheres were implanted into athymic nude mice and irradiated with 647 nm red light to promote bone formation. It was found that irradiating rMSCs with high levels of red light (647 nm) from an LED (light-emitting diode) increased levels of bone specific markers in rMSCs embedded on PLGA microspheres. RESULT These increased expressions were observed by RT-PCR, real time-QPCR, immunohistochemistry (IHC), and von Kossa and Alizarin red S staining. Microsphere matrices coated with rMSCs were injected into athymic nude mice and irradiated with red light for 60 seconds showed significantly greater bone-specific phenotypes after 4 weeks in vivo. CONCLUSION The devised PLGA microsphere matrix containing rMSCs and irradiation with red light at 647 nm process shows promise as a means of coating implantable biomedical devices to improve their biocompatibilities and in vivo performances.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA bio-complex, 689 Sampyeong-Dong, Bundang-Gu, Seongnam-Si Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA bio-complex, 689 Sampyeong-Dong, Bundang-Gu, Seongnam-Si Republic of Korea
| |
Collapse
|
7
|
Qian J, Xu W, Yong X, Jin X, Zhang W. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:95-101. [DOI: 10.1016/j.msec.2013.11.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/30/2013] [Accepted: 11/29/2013] [Indexed: 12/31/2022]
|
8
|
Rekola J, Lassila LVJ, Hirvonen J, Lahdenperä M, Grenman R, Aho AJ, Vallittu PK. Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2345-2354. [PMID: 20464458 DOI: 10.1007/s10856-010-4087-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Wood is a natural fiber reinforced composite. It structurally resembles bone tissue to some extent. Specially heat-treated birch wood has been used as a model material for further development of synthetic fiber reinforced composites (FRC) for medical and dental use. In previous studies it has been shown, that heat treatment has a positive effect on the osteoconductivity of an implanted wood. In this study the effects of two different heat treatment temperatures (140 and 200 degrees C) on wood were studied in vitro. Untreated wood was used as a control material. Heat treatment induced biomechanical changes were studied with flexural and compressive tests on dry birch wood as well as on wood after 63 days of simulated body fluid (SBF) immersion. Dimensional changes, SBF sorption and hydroxylapatite type mineral formation were also assessed. The results showed that SBF immersion decreases the biomechanical performance of wood and that the heat treatment diminishes the effect of SBF immersion on biomechanical properties. With scanning electron microscopy and energy dispersive X-ray analysis it was shown that hydroxylapatite type mineral precipitation formed on the 200 degrees C heat-treated wood. An increased weight gain of the same material during SBF immersion supported this finding. The results of this study give more detailed insight of the biologically relevant changes that heat treatment induces in wood material. Furthermore the findings in this study are in line with previous in vivo studies.
Collapse
Affiliation(s)
- J Rekola
- Department of Biomaterials Science, University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pinkert A, Marsh KN, Pang S, Staiger MP. Ionic liquids and their interaction with cellulose. Chem Rev 2010; 109:6712-28. [PMID: 19757807 DOI: 10.1021/cr9001947] [Citation(s) in RCA: 733] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André Pinkert
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
10
|
The effect of heat treatment of wood on osteoconductivity. Acta Biomater 2009; 5:1596-604. [PMID: 19231305 DOI: 10.1016/j.actbio.2009.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/09/2008] [Accepted: 01/13/2009] [Indexed: 11/22/2022]
Abstract
Wood is a natural porous fibre composite, which has some structural similarities to bone. Recently, it has been used as a modelling material in developing synthetic fibre-reinforced composite to be used as load-bearing non-metallic artificial bone material. In this study, the behaviour of wood implanted into bone was studied in vivo in the femur bone of the rabbit. Wood was pre-treated by heat, which altered its chemical composition and structure, as well as the biomechanical properties. In the heat treatment, wood's dimensional stability is enhanced, equilibrium moisture content reduces and the biological durability increases. Cone-shaped implants were manufactured from heat-treated (at 200 and 140 degrees C) birch wood (Betula pubescens) and from untreated birch. A total of 62 implants were placed in the distal femur of 50 white New Zealand rabbits. The behaviour of the implants was studied at 4, 8 and 20 weeks with histological and histometrical analysis. Osteoconductive contact line and the presence of fibrous tissue and foreign body reaction were determined. The amount of fibrous tissue diminished with time, and the absence of foreign body reaction was found to be in correlation to the amount of heat treatment. Histologically found contact between the implant and the host bone at the interface was significantly more abundant in the 200 degrees C group (avg. 12.8%) vs. the 140 degrees C (avg. 2.7%) and the untreated groups (avg. 0.6%). It was observed that the heat treatment significantly modified the biological behaviour of the implanted wood. The changes of the wood by heat treatment showed a positive outcome concerning osteoconductivity of the material.
Collapse
|
11
|
Qian J, Kang Y, Wei Z, Zhang W. Fabrication and characterization of biomorphic 45S5 bioglass scaffold from sugarcane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Qian J, Kang Y, Zhang W, Li Z. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:3373-3383. [PMID: 18545942 DOI: 10.1007/s10856-008-3475-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 05/15/2008] [Indexed: 05/26/2023]
Abstract
Biomorphous, highly porous hydroxyapatite (HA) ceramics have been prepared by a combination of a novel biotemplating process and a sol-gel method, using natural plants like cane and pine as biotemplates. A HA sol was first synthesized from triethylphosphate and calcium nitrate used as the phosphorus and calcium precursors, respectively, and infiltrated into the biotemplates, and subsequently they were sintered at elevated temperatures to obtain porous HA ceramics. The microstructural changes, phase and chemical composition evolutions during the biotemplate-to-HA conversion were investigated by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The XRD and FT-IR analysis revealed that the dominant phase of the product was HA, which contained a small amount of mixed A/B-type carbonated HA, closely resembling that of human bone apatite. Moreover, the appearance of a small amount of secondary phase CaCO(3) seemed unavoidable. The HA was not transformed to the other calcium phosphate phases up to 1400 degrees C, but it contained a trace amount of CaO when sintered at above 1100 degrees C. The possible transformation mechanism was proposed. The SEM observation and mechanical property test showed that as-produced HA ceramics retained the macro-/micro-porous structures of the biotemplates with high precision, and possessed acceptable mechanical strength, which is suggested to be potential scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Junmin Qian
- Xi'an Jiaotong University, Xi'an, 710049, China.
| | | | | | | |
Collapse
|