1
|
Hosseini Hooshiar M, Salari S, Nasiri K, Salim US, Saeed LM, Yasamineh S, Safaralizadeh R. The potential use of bacteriophages as antibacterial agents in dental infection. Virol J 2024; 21:258. [PMID: 39425223 PMCID: PMC11490148 DOI: 10.1186/s12985-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Dental infections, such as apical Periodontitis, periodontitis, and peri-implantitis (PI), are closely associated with specific bacterial species, including Streptococcus mutans (S. mutans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum), among others. Antibiotics are extensively utilized for prophylactic and therapeutic purposes in the treatment of dental infections and other dental-related issues. Unfortunately, the rapid emergence of antimicrobial resistance has accompanied the increased use of antibiotics in recent years. Specific bacterial pathogens have reached a critical stage of antibiotic resistance, characterized by the proliferation of pan-resistant strains and the scarcity of viable therapeutic alternatives. Therapeutic use of particular bacteriophage (phage) particles that target bacterial pathogens is one potential alternative to antibiotics that are now being seriously considered for treating bacterial illnesses. A kind of virus known as a phage is capable of infecting and eliminating bacteria. Because they can't infect cells in plants and animals, phages might be a harmless substitute for antibiotics. To control oral disorders including periodontitis and dental caries, several research have been conducted in this area to study and identify phages from human saliva and dental plaque. The capacity of these agents to disturb biofilms expands their effectiveness against dental plaque biofilms and oral pathogens in cases of periodontitis, PI, and apical periodontitis. This review summarizes the current antibacterial properties of phages used to treat a variety of dental infections, such as periodontitis, peri-implantitis, infected dentin, and apical periodontitis.
Collapse
Affiliation(s)
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ula Samir Salim
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Lamya M Saeed
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Reza Safaralizadeh
- Restorative Dentistry Department of Dental Faculty, TABRIZ Medical University, Tabriz, Iran.
| |
Collapse
|
2
|
Behjat A, Sanaei S, Mosallanejad MH, Atapour M, Sheikholeslam M, Saboori A, Iuliano L. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. BIOMATERIALS ADVANCES 2024; 163:213928. [PMID: 38941776 DOI: 10.1016/j.bioadv.2024.213928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Additive manufacturing (AM) of Ti-based biomedical implants is a pivotal research topic because of its ability to produce implants with complicated geometries. Despite desirable mechanical properties and biocompatibility of Ti alloys, one major drawback is their lack of inherent antibacterial properties, increasing the risk of postoperative infections. Hence, this research focuses on the Ti536 (Ti5Al3V6Cu) alloy, developed through Electron Beam Powder Bed Fusion (EB-PBF), exploring bio-corrosion, antibacterial features, and cell biocompatibility. The microstructural characterization revealed grain refinement and the formation of Ti2Cu precipitates with different morphologies and sizes in the Ti matrix. Electrochemical tests showed that Cu content minimally influenced the corrosion current density, while it slightly affected the stability, defect density, and chemical composition of the passive film. According to the findings, the Ti536 alloy demonstrated enhanced antibacterial properties without compromising its cell biocompatibility and corrosion behavior, thanks to Ti2Cu precipitates. This can be attributed to both the release of Cu ions and the Ti2Cu precipitates. The current study suggests that the EB-PBF fabricated Ti536 sample is well-suited for use in load-bearing applications within the medical industry. This research also offers an alloy design roadmap for novel biomedical Ti-based alloys with superior biological performance using AM methods.
Collapse
Affiliation(s)
- Amir Behjat
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saber Sanaei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Hossein Mosallanejad
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Luca Iuliano
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
3
|
Bakitian FA. A Comprehensive Review of the Contemporary Methods for Enhancing Osseointegration and the Antimicrobial Properties of Titanium Dental Implants. Cureus 2024; 16:e68720. [PMID: 39238921 PMCID: PMC11376426 DOI: 10.7759/cureus.68720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Titanium dental implants with various restorative options are popular for replacing missing teeth due to their comfortable fit, excellent stability, natural appearance, and impressive track record in clinical settings. However, challenges such as potential issues with osseointegration, peri-implant bone loss, and peri-implantitis might lead to implant failure, causing concern for patients and dental staff. Surface modification has the potential to significantly enhance the success rate of titanium implants and meet the needs of clinical applications. This involves the application of various physical, chemical, and bioactive coatings, as well as adjustments to implant surface topography, offering significant potential for enhancing implant outcomes in terms of osseointegration and antimicrobial properties. Many surface modification methods have been employed to improve titanium implants, showcasing the diversity of approaches in this field including sandblasting, acid etching, plasma spraying, plasma immersion ion implantation, physical vapor deposition, electrophoretic deposition, electrochemical deposition, anodization, microarc oxidation, laser treatments, sol-gel method, layer-by-layer self-assembly technology, and the adsorption of biomolecules. This article provides a comprehensive overview of the surface modification methods for titanium implants to address issues with insufficient osseointegration and implant-related infections. It encompasses the physical, chemical, and biological aspects of these methods to provide researchers and dental professionals with a robust resource to aid them in their study and practical use of dental implant materials, ensuring they are thoroughly knowledgeable and well-prepared for their endeavors.
Collapse
Affiliation(s)
- Fahad A Bakitian
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
4
|
Silva Lima Mendes DT, Leite Matos GR, Stwart de Araújo Souza SA, Souza Silva Macedo MC, Tavares DDS, Resende CX. Does the incorporation of zinc into TiO 2 on titanium surfaces increase bactericidal activity? A systematic review and meta-analysis. J Prosthet Dent 2024; 132:510-519. [PMID: 36270807 DOI: 10.1016/j.prosdent.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
STATEMENT OF PROBLEM Infections associated with bacterial biofilm formation are an important cause of early implant failure. With the growing number of antibiotic-resistant bacteria, the incorporation of zinc into TiO2 coatings of titanium implants has emerged to promote osseointegration and inhibit bacterial proliferation. However, a systematic assessment of its efficacy is lacking. PURPOSE The purpose of this systematic review and meta-analysis was to assess the bactericidal effect of zinc-modified TiO2 coatings on titanium or Ti-6Al-4V alloy. MATERIAL AND METHODS The review was structured based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist and the peer review of electronic search strategies (PRESS) guidelines. The search was performed in Science Direct, SCOPUS, Web of Science, and PubMed databases, including experimental in vitro studies that used titanium or Ti-6Al-4V as a control group and performed bacterial assays. Meta-analysis was performed by using the standardized mean differences of antibacterial effects. RESULTS A total of 2519 articles were collected after duplicate removal. Then, eligibility criteria and a manual search were applied to select 20 studies for qualitative analysis and 16 studies for statistical analysis. The risk of bias revealed low-quality evidence. The meta-analysis showed that zinc positively affected the bactericidal activity of TiO2 coatings (-8.79, CI95%=-11.01 to -6.57, P<.001), with a high degree of heterogeneity (I2=78%). Subgroup analysis with TiO2 nanotubes produced by anodization and ZnO nanoparticles by hydrothermal synthesis reduced heterogeneity to 43%, with the removal of outliers (I2=46%), with a favorable antibacterial effect for zinc incorporation into TiO2. CONCLUSIONS Bactericidal activity was identified for zinc incorporated into TiO2 coatings, making it an interesting option for titanium dental implants.
Collapse
Affiliation(s)
- Douglas Thainan Silva Lima Mendes
- Postgraduate student, Post-graduate Program in Materials Science and Engineering, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Gusttavo Reis Leite Matos
- Postgraduate student, Post-graduate Program in Materials Science and Engineering, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | | | - Débora Dos Santos Tavares
- Adjunct Professor, Department of Health Education, Federal University of Sergipe (UFS), Lagarto, Sergipe, Brazil
| | - Cristiane Xavier Resende
- Adjunct Professor, Department of Materials Science and Engineering, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
5
|
Gou Y, Hu L, Liao X, He J, Liu F. Advances of antimicrobial dressings loaded with antimicrobial agents in infected wounds. Front Bioeng Biotechnol 2024; 12:1431949. [PMID: 39157443 PMCID: PMC11327147 DOI: 10.3389/fbioe.2024.1431949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Wound healing is a complex process that is critical for maintaining the barrier function of the skin. However, when a large quantity of microorganisms invade damaged skin for an extended period, they can cause local and systemic inflammatory responses. If left untreated, this condition may lead to chronic infected wounds. Infected wounds significantly escalate wound management costs worldwide and impose a substantial burden on patients and healthcare systems. Recent clinical trial results suggest that the utilization of effective antimicrobial wound dressing could represent the simplest and most cost-effective strategy for treating infected wounds, but there has hitherto been no comprehensive evaluation reported on the efficacy of antimicrobial wound dressings in promoting wound healing. Therefore, this review aims to systematically summarize the various types of antimicrobial wound dressings and the current research on antimicrobial agents, thereby providing new insights for the innovative treatment of infected wounds.
Collapse
Affiliation(s)
- Yifan Gou
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liwei Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuejuan Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing He
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fan Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Aly YM, Zhang Z, Ali N, Milward MR, Poologasundarampillai G, Dong H, Kuehne SA, Camilleri J. Ceramic conversion treated titanium implant abutments with gold for enhanced antimicrobial activity. Dent Mater 2024; 40:1199-1207. [PMID: 38853104 DOI: 10.1016/j.dental.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Peri-implantitis is an inflammatory process around dental implants that is characterised by bone loss that may jeopardize the long-term survival of osseo integrated dental implants. The aim of this study was to create a surface coating on titanium abutments that possesses cellular adhesion and anti-microbial properties as a post-implant placement strategy for patients at risk of peri-implantitis. MATERIALS AND METHODSMETHODS Titanium alloy Grade V stubs were coated with gold particles and then subjected to ceramic conversion treatment (CCT) at 620 °C for 3, 8 and 80 h. The surface characteristics and chemistry were assessed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis. The leaching profile was investigated by inductively coupled plasma mass spectroscopy (ICP-MS) for all groups after 7, 14 and 28 days in contact with distilled water. A scratch test was conducted to assess the adhesion of the gold coating to the underlying titanium discs. Two bacterial species (Staphylococcus aureus (SA) & Fusobacterium nucleatum (FN)) were used to assess the antibacterial behaviour of the coated discs using a direct attachment assay test. The potential changes in surface chemistry by the bacterial species were investigated by grazing angle XRD. RESULTS The gold pre-coated titanium discs exhibited good stability of the coating especially after immersion in distilled water and after bacterial colonisation as evident by XRD analysis. Good surface adhesion of the coating was demonstrated for gold treated discs after scratch test analysis, especially titanium, following a 3-hour (3 H) ceramic conversion treatment. All coated discs exhibited significantly improved antimicrobial properties against both tested bacterial species compared to untreated titanium discs. CONCLUSIONS Ceramic conversion treated titanium with a pre-deposited gold layer showed improved antimicrobial properties against both SA and FN species than untreated Ti-C discs. Scratch test analysis showed good adherence properties of the coated discs the oxide layer formed is firmly adherent to the underlying titanium substrate, suggesting that this approach may have clinical efficacy for coating implant abutments.
Collapse
Affiliation(s)
- Yasser M Aly
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt; School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhenxue Zhang
- School of Metallurgy and Materials, College of Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Nesma Ali
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael R Milward
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gowsihan Poologasundarampillai
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hanshan Dong
- School of Metallurgy and Materials, College of Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Sarah A Kuehne
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Josette Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
7
|
Maher N, Mahmood A, Fareed MA, Kumar N, Rokaya D, Zafar MS. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res 2024:S2090-1232(24)00300-X. [PMID: 39033875 DOI: 10.1016/j.jare.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose. AIM This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials. KEY SCIENTIFIC CONCEPTS OF REVIEW Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.
Collapse
Affiliation(s)
- Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Amber Fareed
- Clinical Sciences Department College of Dentistry Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates.
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah 41311, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman 11942, Jordan; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
8
|
Xia Y, Zhang Z, Zhou K, Lin Z, Shu R, Xu Y, Zeng Z, Chang J, Xie Y. Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion. Regen Biomater 2024; 11:rbae028. [PMID: 38605852 PMCID: PMC11007117 DOI: 10.1093/rb/rbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu2+ and Zn2+ and SiO 3 2 - ) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.
Collapse
Affiliation(s)
- Yiru Xia
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kecong Zhou
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhikai Lin
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuze Xu
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
10
|
Madiwal V, Khairnar B, Rajwade J. Enhanced antibacterial activity and superior biocompatibility of cobalt-deposited titanium discs for possible use in implant dentistry. iScience 2024; 27:108827. [PMID: 38303692 PMCID: PMC10831949 DOI: 10.1016/j.isci.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The clinical success of implants depends on rapid osseointegration, and new materials are being developed considering the increasing demand. Considering cobalt (Co) antibacterial characteristics, we developed Co-deposited titanium (Ti) using direct current (DC) sputtering and investigated it as a new material for implant dentistry. The material was characterized using atomic absorption spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The material's surface topography, roughness, surface wettability, and hardness were also analyzed. The Co thin film (Ti-Co15) showed excellent antibacterial effects against microbes implicated in peri-implantitis. Furthermore, Ti-Co15 was compatible and favored the attachment and spreading of MG-63 cells. The alkaline phosphatase and calcium mineralization activities of MG-63 cells cultured on Ti-Co15 remained unaltered compared to Ti. These data correlated well with the time-dependent expression of ALP, RUNX-2, and BMP-2 genes involved in osteogenesis. The results demonstrate that Co-deposited Ti could be a promising material in implant dentistry.
Collapse
Affiliation(s)
- Vaibhav Madiwal
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| | - Bhushan Khairnar
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| |
Collapse
|
11
|
Jin X, Xie D, Zhang Z, Liu A, Wang M, Dai J, Wang X, Deng H, Liang Y, Zhao Y, Wen P, Li Y. In vitro and in vivo studies on biodegradable Zn porous scaffolds with a drug-loaded coating for the treatment of infected bone defect. Mater Today Bio 2024; 24:100885. [PMID: 38169782 PMCID: PMC10758886 DOI: 10.1016/j.mtbio.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Additively manufactured biodegradable zinc (Zn) scaffolds have great potential to repair infected bone defects due to their osteogenic and antibacterial properties. However, the enhancement of antibacterial properties depends on a high concentration of dissolved Zn2+, which in return deteriorates osteogenic activity. In this study, a vancomycin (Van)-loaded polydopamine (PDA) coating was prepared on pure Zn porous scaffolds to solve the above dilemma. Compared with pure Zn scaffolds according to comprehensive in vitro tests, the PDA coating resulted in a slow degradation and inhibited the excessive release of Zn2+ at the early stage, thus improving cytocompatibility and osteogenic activity. Meanwhile, the addition of Van drug substantially suppressed the attachment and proliferation of S. aureus and E. coli bacterial. Furthermore, in vivo implantation confirmed the simultaneously improved osteogenic and antibacterial functions by using the pure Zn scaffolds with Van-loaded PDA coating. Therefore, it is promising to employ biodegradable Zn porous scaffolds with the proposed drug-loaded coating for the treatment of infected bone defects.
Collapse
Affiliation(s)
- Xiang Jin
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Dongxu Xie
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenbao Zhang
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Menglin Wang
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Huanze Deng
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Yijie Liang
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| | - Yantao Zhao
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanfeng Li
- Postgraduate Training Base, Jinzhou Medical University and The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 10048, China
- Department of Stomatology, The Fourth Medical Centre, PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
12
|
Han SA, Kim S, Seo Y, Yang SK, Rhee CS, Han DH. Dental implant as a potential risk factor for maxillary sinus fungus ball. Sci Rep 2024; 14:2483. [PMID: 38291074 PMCID: PMC10827791 DOI: 10.1038/s41598-024-52661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Fungus ball is the most common form of non-invasive fungal sinusitis, and maxillary sinus is the most commonly involved site. Maxillary sinus fungus ball (MFB) accounts for a considerable proportion of unilateral maxillary sinusitis. The prevalence of MFB has recently increased; however, its contributing factors are unclear. This study analyzed the association between MFB and dental implants. One hundred one patients who underwent unilateral maxillary sinus surgery were divided into two groups based on surgical biopsy results: unilateral bacterial sinusitis (UBS, n = 45) and MFB (n = 56). Stratified random sampling of 30 patients from each group was performed to adjust for age. The number of dental implants on maxillary teeth and degree of penetration into the maxillary sinus was radiologically evaluated. The number of patients with dental implants was greater (P = 0.085) and the number of implants was significantly higher (P = 0.031) in the MFB group. Dental implant can be a potential risk factor for MFB development. Therefore, dental implant surgeons should take caution in penetrating the maxillary sinus floor during implant insertion and otolaryngologists should consider the possibility of fungus ball when assessing patients with sinusitis who have dental implants.
Collapse
Affiliation(s)
- Sun A Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yuju Seo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Daehakro 101, Jongno-gu, Seoul, Republic of Korea
| | - Seung Koo Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Daehakro 101, Jongno-gu, Seoul, Republic of Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Daehakro 101, Jongno-gu, Seoul, Republic of Korea
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Allergy and Clinical Immunology and Sensory Organ Research Institute, Seoul National University Biomedical Research Center, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Biomedical Research Center, Seoul, Republic of Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Daehakro 101, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Ponomarev VA, Sheveyko AN, Kuptsov KA, Sukhanova EV, Popov ZI, Permyakova ES, Slukin PV, Ignatov SG, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Kuchmizhak AA, Shtansky DV. X-ray and UV Irradiation-Induced Reactive Oxygen Species Mediated Antibacterial Activity in Fe and Pt Nanoparticle-Decorated Si-Doped TiCaCON Films. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888937 DOI: 10.1021/acsami.3c13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence. Here, we present a proof-of-concept study based on the generation of reactive oxygen species (ROS) by the implant surface in response to X-ray irradiation, including through a layer of 3 mm adipose tissue, providing bactericidal protection. The effect of UV and X-ray irradiation of the implant surface on the ROS formation and the associated bactericidal activity was compared. The focus of our study was light-sensitive Si-doped TiCaCON films decorated with Fe and Pt nanoparticles (NPs) with photoinduced antibacterial activity mediated by ROS. In the visible and infrared range of 300-1600 nm, the films absorb more than 60% of the incident light. The high light absorption capacity of TiO2/TiC and TiO2/TiN heterostructures was demonstrated by density functional theory calculations. After short-term (5-10 s) low-dose X-ray irradiation, the films generated significantly more ROS than after UV illumination for 1 h. The Fe/TiCaCON-Si films showed enhanced biomineralization capacity, superior cytocompatibility, and excellent antibacterial activity against multidrug-resistant hospital Escherichia coli U20 and K261 strains and methicillin-resistant Staphylococcus aureus MW2 strain. Our study clearly demonstrates that oxidized Fe NPs are a promising alternative to the widely used Ag NPs in antibacterial coatings, and X-rays can potentially be used in ROS-regulating therapy to suppress inflammation in case of postimplant complications.
Collapse
Affiliation(s)
- Viktor A Ponomarev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | | | - Zakhar I Popov
- Emanuel Institute of Biochemical Physics RAS, Moscow 199339, Russia
- Plekhanov Russian University of Economics, 36 Stremyanny per., Moscow 117997, Russia
| | | | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Aleksandr A Kuchmizhak
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Pacific Quantum Center, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
14
|
Jao Y, Ding SJ, Chen CC. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J Dent Sci 2023; 18:1453-1466. [PMID: 37799910 PMCID: PMC10548011 DOI: 10.1016/j.jds.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Oral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers. Indeed, aPDT has been used alone or in combination with other treatment options dealing with periodontal disease for the elimination of biofilms from bacterial community to achieve bone formation and/or tissue regeneration. In this review article, in addition to factors affecting the efficacy of aPDT, various photosensitizers, the latest technology and perspectives on aPDT are discussed in detail. More importantly, the article emphasizes the novel design and clinical applications of photosensitizers, as well as the synergistic effects of chemical and biomolecules with aPDT to achieve the complete eradication of biofilms and even enhance the biological performance of tissues surrounding the treated oral area.
Collapse
Affiliation(s)
- Ying Jao
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Meier D, Astasov-Frauenhoffer M, Waltimo T, Zaugg LK, Rohr N, Zitzmann NU. Biofilm formation on metal alloys and coatings, zirconia, and hydroxyapatite as implant materials in vivo. Clin Oral Implants Res 2023; 34:1118-1126. [PMID: 37489537 DOI: 10.1111/clr.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Composition of implant material and its surface structure is decisive for oral biofilm accumulation. This study investigated biofilm formation on eight different materials. MATERIALS AND METHODS Eighteen healthy subjects wore intraoral splints fitted with two sets of eight materials for 24 h: zirconia [ZrO2 ]; silver-gold-palladium [AgAuPd]; titanium zirconium [TiZr]; Pagalinor [PA]; hydroxyapatite [HA]; silver-platinum [AgPt]; titanium aluminum niobium [TAN]; titanium grade4 [TiGr4]. Total biomass was stained by safranin to assess plaque accumulation while conventional culturing (CFU) was conducted to investigate viable parts of the biofilm. Cell viability of human gingival fibroblasts (HGF-1) was assessed in vitro. Statistical evaluation was performed with linear mixed-effects models to compare materials (geometric mean ratios, 95% CI), with the level of significance set at ɑ = .05. RESULTS Less biofilm mass and CFU were found on noble metal alloys (AgPt, AgAuPd, and PA). Compared to AgPt, PA had 2.7-times higher biofilm mass value, AgAuPd was 3.9-times, TiGr4 was 4.1-times, TiZr was 5.9-times, TAN was 7.7-times, HA was 7.8-times, and ZrO2 was 9.1-times higher (each p < .001). Similarly, CFU data were significantly lower on AgPt, AgAuPd had 4.1-times higher CFU values, PA was 8.9-times, TiGr4 was 11.2-times, HA was 12.5-times, TiZr was 13.3-times, TAN was 16.9-times, and ZrO2 was 18.5-times higher (each p < .001). HGF-1 viability varied between 47 ± 24.5% (HA) and 94.4 ± 24.6% (PA). CONCLUSION Noble alloys are considered as beneficial materials for the transmucosal part of oral implants, as less biofilm mass, lower bacterial counts, and greater cell viability were detected than on titanium- or zirconia-based materials.
Collapse
Affiliation(s)
- Donat Meier
- Department of Reconstructive Dentistry, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Monika Astasov-Frauenhoffer
- Department Research, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Tuomas Waltimo
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Lucia K Zaugg
- Department of Reconstructive Dentistry, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Nadja Rohr
- Department of Reconstructive Dentistry, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
- Department Research, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Nicola U Zitzmann
- Department of Reconstructive Dentistry, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Liu N, Huang S, Guo F, Wang D, Zuo Y, Li F, Liu C. Calcium phosphate cement with minocycline hydrochloride-loaded gelatine microspheres for peri-implantitis treatment. J Dent 2023; 136:104624. [PMID: 37459952 DOI: 10.1016/j.jdent.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVES This study aimed to fabricate an antibacterial calcium phosphate cement (CPC) with minocycline hydrochloride (MINO)-loaded gelatine microspheres (GMs) as a local drug delivery system for the treatment of peri‑implantitis. METHODS CPC/GMs(MINO), incorporating MINO-loaded GMs into CPC, was developed and characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD), and drug release profiling. The antibacterial activity against Porphyromonas gingivalis and Fusobacterium nucleatum was evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in the extracts of the developed cements to evaluate osteoinductivity in vitro. Furthermore, a rabbit femoral model was established to evaluate osteogenic ability in vivo. RESULTS SEM and XRD confirmed the porous structure and chemical stability of CPC/GMs(MINO). The release profile showed a sustained release of MINO from CPC/GMs(MINO), reaching an equilibrium state on the 14th day with a cumulative release ratio of approximately 84%. For antibacterial assays, the inhibition zone of CPC/GMs(MINO) was 3.67 ± 0.31 cm for P. gingivalis and 7.47 ± 0.50 cm for F. nucleatum. Most bacteria seeded on CPC/GMs(MINO) died after 24 h of culture. In addition, CPC/GMs(MINO) significantly enhanced alkaline phosphatase activity, osteogenic gene expression, and BMSC mineralisation compared with CPC/GMs and the control group (P < 0.05). The in vivo results showed that CPC/GMs(MINO) possessed a higher quality and quantity of bone formation and maturation than CPC/GMs and CPC. CONCLUSIONS CPC/GMs(MINO) showed excellent antibacterial activity against pathogens associated with peri‑implantitis and demonstrated good osteoinductivity and osteogenic ability. CLINICAL SIGNIFICANCE Peri-implantitis is among the most common and challenging biological complications associated with dental implants. In this study, MINO-loaded GMs were incorporated into CPC, which endowed the composite cement with excellent antibacterial and osteogenic abilities, demonstrating its potential as a bone graft substitute for treating peri‑implantitis.
Collapse
Affiliation(s)
- Ning Liu
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Shuo Huang
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Fang Guo
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Danyang Wang
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yanping Zuo
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Fang Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Changkui Liu
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
17
|
Avery D, Morandini L, Celt N, Bergey L, Simmons J, Martin RK, Donahue HJ, Olivares-Navarrete R. Immune cell response to orthopedic and craniofacial biomaterials depends on biomaterial composition. Acta Biomater 2023; 161:285-297. [PMID: 36905954 PMCID: PMC10269274 DOI: 10.1016/j.actbio.2023.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Materials for craniofacial and orthopedic implants are commonly selected based on mechanical properties and corrosion resistance. The biocompatibility of these materials is typically assessed in vitro using cell lines, but little is known about the response of immune cells to these materials. This study aimed to evaluate the inflammatory and immune cell response to four common orthopedic materials [pure titanium (Ti), titanium alloy (TiAlV), 316L stainless steel (SS), polyetheretherketone (PEEK)]. Following implantation into mice, we found high recruitment of neutrophils, pro-inflammatory macrophages, and CD4+ T cells in response to PEEK and SS implants. Neutrophils produced higher levels of neutrophil elastase, myeloperoxidase, and neutrophil extracellular traps in vitro in response to PEEK and SS than neutrophils on Ti or TiAlV. Macrophages co-cultured on PEEK, SS, or TiAlV increased polarization of T cells towards Th1/Th17 subsets and decreased Th2/Treg polarization compared to Ti substrates. Although SS and PEEK are considered biocompatible materials, both induce a more robust inflammatory response than Ti or Ti alloy characterized by high infiltration of neutrophils and T cells, which may cause fibrous encapsulation of these materials. STATEMENT OF SIGNIFICANCE: Materials for craniofacial and orthopedic implants are commonly selected based on their mechanical properties and corrosion resistance. This study aimed to evaluate the immune cell response to four common orthopedic and craniofacial biomaterials: pure titanium, titanium-aluminum-vanadium alloy, 316L stainless steel, and PEEK. Our results demonstrate that while the biomaterials tested have been shown to be biocompatible and clinically successful, the inflammatory response is largely driven by chemical composition of the biomaterials.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Natalie Celt
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Leah Bergey
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jamelle Simmons
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
18
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
19
|
Shirmohammadi A, Maleki Dizaj S, Sharifi S, Fattahi S, Negahdari R, Ghavimi MA, Memar MY. Promising Antimicrobial Action of Sustained Released Curcumin-Loaded Silica Nanoparticles against Clinically Isolated Porphyromonas gingivalis. Diseases 2023; 11:diseases11010048. [PMID: 36975597 PMCID: PMC10047251 DOI: 10.3390/diseases11010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) has always been one of the leading causes of periodontal disease, and antibiotics are commonly used to control it. Numerous side effects of synthetic drugs, as well as the spread of drug resistance, have led to a tendency toward using natural antimicrobials, such as curcumin. The present study aimed to prepare and physicochemically characterize curcumin-loaded silica nanoparticles and to detect their antimicrobial effects on P. gingivalis. METHODS Curcumin-loaded silica nanoparticles were prepared using the chemical precipitation method and then were characterized using conventional methods (properties such as the particle size, drug loading percentage, and release pattern). P. gingivalis was isolated from one patient with chronic periodontal diseases. The patient's gingival crevice fluid was sampled using sterile filter paper and was transferred to the microbiology laboratory in less than 30 min. The disk diffusion method was used to determine the sensitivity of clinically isolated P. gingivalis to curcumin-loaded silica nanoparticles. SPSS software, version 20, was used to compare the data between groups with a p value of <0.05 as the level of significance. Then, one-way ANOVA testing was utilized to compare the groups. RESULTS The curcumin-loaded silica nanoparticles showed a nanometric size and a drug loading percentage of 68% for curcumin. The nanoparticles had a mesoporous structure and rod-shaped morphology. They showed a relatively rapid release pattern in the first 5 days. The release of the drug from the nanoparticles continued slowly until the 45th day. The results of in vitro antimicrobial tests showed that P. gingivalis was sensitive to the curcumin-loaded silica nanoparticles at concentrations of 50, 25, 12.5, and 6.25 µg/mL. One-way ANOVA showed that there was a significant difference between the mean growth inhibition zone, and the concentration of 50 µg/mL showed the highest inhibition zone (p ≤ 0.05). CONCLUSION Based on the obtained results, it can be concluded that the local nanocurcumin application for periodontal disease and implant-related infections can be considered a promising method for the near future in dentistry.
Collapse
Affiliation(s)
- Adileh Shirmohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Shirin Fattahi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz 5166, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| |
Collapse
|
20
|
Gasmi Benahmed A, Gasmi A, Tippairote T, Mujawdiya PK, Avdeev O, Shanaida Y, Bjørklund G. Metabolic Conditions and Peri-Implantitis. Antibiotics (Basel) 2022; 12:65. [PMID: 36671266 PMCID: PMC9854649 DOI: 10.3390/antibiotics12010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Dental implants to replace lost teeth are a common dentistry practice nowadays. Titanium dental implants display a high success rate and improved safety profile. Nevertheless, there is an increasing peri-implantitis (PI), an inflammatory disease associated with polymicrobial infection that adversely affects the hard and soft tissues around the implant. The present review highlights the contribution of different metabolic conditions to PI. The considerations of both local and systemic metabolic conditions are crucial for planning successful dental implant procedures and during the treatment course of PI. Un- or undertreated PI can lead to permanent jaw bone suffering and dental implant losses. The common mediators of PI are inflammation and oxidative stress, which are also the key mediators of most systemic metabolic disorders. Chronic periodontitis, low-grade tissue inflammation, and increased oxidative stress raise the incidence of PI and the underlying systemic metabolic conditions, such as obesity, diabetes mellitus, or harmful lifestyle factors (cigarette smoking, etc.). Using dental biomaterials with antimicrobial effects could partly solve the problem of pathogenic microbial contamination and local inflammation. With local dentistry considering factors, including oral microbiota and implant quality control, the inclusion of the underlying systemic metabolic conditions into the pre-procedure planning and during the treatment course should improve the chances of successful outcomes.
Collapse
Affiliation(s)
- Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Torsak Tippairote
- Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok 10540, Thailand
| | | | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
21
|
Yang J, Liu C, Sun H, Liu Y, Liu Z, Zhang D, Zhao G, Wang Q, Yang D. The progress in titanium alloys used as biomedical implants: From the view of reactive oxygen species. Front Bioeng Biotechnol 2022; 10:1092916. [PMID: 36601391 PMCID: PMC9806234 DOI: 10.3389/fbioe.2022.1092916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Titanium and Titanium alloys are widely used as biomedical implants in oral and maxillofacial surgery, due to superior mechanical properties and biocompatibility. In specific clinical populations such as the elderly, diabetics and patients with metabolic diseases, the failure rate of medical metal implants is increased significantly, putting them at increased risk of revision surgery. Many studies show that the content of reactive oxygen species (ROS) in the microenvironment of bone tissue surrounding implant materials is increased in patients undergoing revision surgery. In addition, the size and shape of materials, the morphology, wettability, mechanical properties, and other properties play significant roles in the production of ROS. The accumulated ROS break the original balance of oxidation and anti-oxidation, resulting in host oxidative stress. It may accelerate implant degradation mainly by activating inflammatory cells. Peri-implantitis usually leads to a loss of bone mass around the implant, which tends to affect the long-term stability and longevity of implant. Therefore, a great deal of research is urgently needed to focus on developing antibacterial technologies. The addition of active elements to biomedical titanium and titanium alloys greatly reduce the risk of postoperative infection in patients. Besides, innovative technologies are developing new biomaterials surfaces conferring anti-infective properties that rely on the production of ROS. It can be considered that ROS may act as a messenger substance for the communication between the host and the implanted material, which run through the entire wound repair process and play a role that cannot be ignored. It is necessary to understand the interaction between oxidative stress and materials, the effects of oxidative stress products on osseointegration and implant life as well as ROS-induced bactericidal activity. This helps to facilitate the development of a new generation of well-biocompatible implant materials with ROS responsiveness, and ultimately prolong the lifespan of implants.
Collapse
Affiliation(s)
- Jun Yang
- School of Stomatology, Jiamusi University, Jiamusi, China,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Liu
- School of Stomatology, Jiamusi University, Jiamusi, China,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ying Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Zhaogang Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China,*Correspondence: Donghong Yang, ; Dan Zhang,
| | - Gang Zhao
- School of Stomatology, Jiamusi University, Jiamusi, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Donghong Yang
- School of Stomatology, Jiamusi University, Jiamusi, China,*Correspondence: Donghong Yang, ; Dan Zhang,
| |
Collapse
|
22
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
23
|
Roy M, Corti A, Dorocka-Bobkowska B, Pompella A. Positive Effects of UV-Photofunctionalization of Titanium Oxide Surfaces on the Survival and Differentiation of Osteogenic Precursor Cells-An In Vitro Study. J Funct Biomater 2022; 13:jfb13040265. [PMID: 36547525 PMCID: PMC9783962 DOI: 10.3390/jfb13040265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The UVC-irradiation ("UV-photofunctionalization") of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the post-operative healing process. To what extent the effect of UVC irradiation is dependent on the type or the topography of titanium used, is still not sufficiently established. OBJECTIVE The present study was aimed at analyzing the effects of UV-photofunctionalization on the TiO2 topography, as well as on the gene expression patterns and the biological activity of osteogenic cells, i.e., osteogenic precursors cultured in vitro in the presence of different titanium specimens. METHODOLOGY The analysis of the surface roughness was performed by atomic force microscopy (AFM) on machined surface grade 2, and sand-blasted/acid-etched surface grades 2 and 4 titanium specimens. The expression of the genes related with the process of healing and osteogenesis was studied in the MC3T3-E1 pre-osteoblastic murine cells, as well as in MSC murine stem cells, before and after exposure to differently treated TiO2 surfaces. RESULTS The AFM determinations showed that the surface topographies of titanium after the sand-blasting and acid-etching procedures, look very similar, independently of the grade of titanium. The UVC-irradiation of the TiO2 surface was found to induce an increase in the cell survival, attachment and proliferation, which was positively correlated with an increased expression of the osteogenesis-related genes Runx2 and alkaline phosphatase (ALP). CONCLUSION Overall, our findings expand and further support the current view that UV-photofunctionalization can indeed restore biocompatibility and osteointegration of TiO2 implants, and suggest that this at least in part occurs through a stimulation of the osteogenic differentiation of the precursor cells.
Collapse
Affiliation(s)
- Marco Roy
- Department of Prosthodontics and Gerostomatology, Poznan University of Medical Sciences, 60-792 Poznan, Poland
- Correspondence:
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| | - Barbara Dorocka-Bobkowska
- Department of Prosthodontics and Gerostomatology, Poznan University of Medical Sciences, 60-792 Poznan, Poland
| | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| |
Collapse
|
24
|
Surface Free Energy and Composition Changes and Ob Cellular Response to CHX-, PVPI-, and ClO 2-Treated Titanium Implant Materials. J Funct Biomater 2022; 13:jfb13040202. [PMID: 36412843 PMCID: PMC9680491 DOI: 10.3390/jfb13040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
The study evaluated the interaction of a titanium dental implant surface with three different antibacterial solutions: chlorhexidine, povidone-iodine, and chlorine dioxide. Implant surface decontamination is greatly challenging modern implant dentistry. Alongside mechanical cleaning, different antibacterial agents are widely used, though these could alter implant surface properties. Commercially pure (CP) grade 4 titanium (Ti) discs were treated with three different chemical agents (chlorhexidine 0.2% (CHX), povidone-iodine 10% (PVPI), chlorine dioxide 0.12% (ClO2)) for 5 min. Contact angle measurements, X-ray photoelectron spectroscopy (XPS) analysis, and cell culture studies were performed. Attachment and proliferation of primary human osteoblast cells were investigated via MTT (dimethylthiazol-diphenyl tetrazolium bromide), alamarBlue, LDH (lactate dehydrogenase), and fluorescent assays. Contact angle measurements showed that PVPI-treated samples (Θ = 24.9 ± 4.1) gave no difference compared with controls (Θ = 24.6 ± 5.4), while CHX (Θ = 47.2 ± 4.1) and ClO2 (Θ = 39.2 ± 9.8) treatments presented significantly higher Θ values. All samples remained in the hydrophilic region. XPS analysis revealed typical surface elements of CP grade 4 titanium (Ti, O, and C). Both MTT and alamarBlue cell viability assays showed similarity between treated and untreated control groups. The LDH test revealed no significant difference, and fluorescent staining confirmed these results. Although there was a difference in surface wettability, a high proliferation rate was observed in all treated groups. The in vitro study proved that CHX, PVPI, and ClO2 are proper candidates as dental implant decontamination agents.
Collapse
|
25
|
Shao H, Ma M, Wang Q, Yan T, Zhao B, Guo S, Tong S. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: A review. Front Bioeng Biotechnol 2022; 10:1000401. [PMID: 36147527 PMCID: PMC9485881 DOI: 10.3389/fbioe.2022.1000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the rate of implant failure has been increasing. Microbial infection was the primary cause, and the main stages included bacterial adhesion, biofilm formation, and severe inhibition of implant osseointegration. Various biomaterials and their preparation methods have emerged to produce specific implants with antimicrobial or bactericidal properties to reduce implant infection caused by bacterial adhesion and effectively promote bone and implant integration. In this study, we reviewed the research progress of bone integration promotion and antibacterial action of superhydrophilic surfaces based on titanium alloys. First, the adverse reactions caused by bacterial adhesion to the implant surface, including infection and bone integration deficiency, are briefly introduced. Several commonly used antibacterial methods of titanium alloys are introduced. Secondly, we discuss the antibacterial properties of superhydrophilic surfaces based on ultraviolet photo-functionalization and plasma treatment, in contrast to the antibacterial principle of superhydrophobic surface morphology. Thirdly, the osteogenic effects of superhydrophilic surfaces are described, according to the processes of osseointegration: osteogenic immunity, angiogenesis, and osteogenic related cells. Finally, we discuss the challenges and prospects for the development of this superhydrophilic surface in clinical applications, as well as the prominent strategies and directions for future research.
Collapse
Affiliation(s)
- Hanyu Shao
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Mingchen Ma
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Baohong Zhao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shuang Tong
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Mühl A, Szabó P, Krafcsik O, Aigner Z, Kopniczky J, Ákos Nagy, Marada G, Turzó K. Comparison of surface aspects of turned and anodized titanium dental implant, or abutment material for an optimal soft tissue integration. Heliyon 2022; 8:e10263. [PMID: 36042714 PMCID: PMC9420512 DOI: 10.1016/j.heliyon.2022.e10263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Soft tissue integration of dental implants lags behind natural biological integration of teeth mainly because of non-optimal surface features. Peri-implant infections resulting in loss of supporting bone jeopardize the success of implants. Our aim was to compare an anodized surface design with a turned one for a more optimal surface. Methods Morphological and chemical structures of turned and anodized Ti surfaces (grade 5: Ti6Al4V) discs were examined by scanning electron microscopy (SEM-EDS), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The hydrophilic or hydrophobic features of the surfaces were determined by dynamic contact angle measurement. Results SEM and AFM revealed significant differences in the morphology and roughness (Ra) of the samples. Anodized discs presented a granular structure, while turned ones had circular grooves. The roughness was significantly higher for the anodized samples compared to the turned ones. XPS and EDS confirmed typical elements for both Ti6Al4V samples. Due to anodization, the amount of Ti (IV) had increased and Ti (III) had decreased in the thicker oxide layer. Anodized samples resulted in a more hydrophilic surface than the turned ones. Significance The results suggest that the tested anodized samples present optimal surface characteristics to be used as abutment material for an optimal soft tissue integration. Optimization of soft tissue barrier is a crucial factor in long-term dental implant success and peri-implant health. The applied anodization is an easy-to-use process to change the color of titanium to a more favorable yellow. Changes in surface morphology and hydrophilic features were favorable for soft tissue attachment. Anodized samples presented optimal surface composition to be used as abutment material of dental implants.
Collapse
Affiliation(s)
- Attila Mühl
- Private Dental Office, H-7300 Pécsi út 1., Komló, Hungary
| | - Péter Szabó
- Szentágothai Research Center, Environmental Analytical and Geoanalytical Research Group, Ifjúság útja 20., H-7624, Pécs, Hungary
| | - Olga Krafcsik
- Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111, Budapest, Hungary
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Zrínyi u. 9., H-6720, Szeged, Hungary
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9., H-6720, Szeged, Hungary
| | - Ákos Nagy
- Dental School, Medical Faculty, University of Pécs, Dischka Gy. u. 5., H-7621, Pécs, Hungary
| | - Gyula Marada
- Dental School, Medical Faculty, University of Pécs, Dischka Gy. u. 5., H-7621, Pécs, Hungary
| | - Kinga Turzó
- Dental School, Medical Faculty, University of Pécs, Dischka Gy. u. 5., H-7621, Pécs, Hungary
| |
Collapse
|
27
|
Xu L, Qin X, Mozaffari MS, Yan D, Sun X, Cao Y. Hybrid system with stable structure of hard/soft tissue substitutes induces re-osseointegration in a rat model of biofilm-mediated peri-implantitis. J Biomed Mater Res B Appl Biomater 2022; 110:2452-2463. [PMID: 35620882 DOI: 10.1002/jbm.b.35102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
Re-osseointegration of an infected/contaminated dental implant poses major clinical challenges. We tested the hypothesis that the application of an antibiotic-releasing construct, combined with hard/soft tissue replacement, increases the efficacy of reconstructive therapy. We initially fabricated semi-flexible hybrid constructs of β-TCP/PHBHHx, with tetracycline (TC) (TC amounts: 5%, 10%, and 15%). Thereafter, using in vitro assays, TC release profile, attachment to rat bone marrow-derived stem cells (rBMSCs) and their viability as well as anti-bacterial activity were determined. Thereafter, regenerative efficacies of the three hybrid constructs were assessed in a rat model of peri-implantitis induced by Aggregatibacter actinomycetemcomitans biofilm; control animals received β-TCP/Bio-Gide and TC injection. Eight weeks later, maxillae were obtained for radiological, histological, and histomorphometric analyses of peri-implant tissues. Sulcus bleeding index was chronologically recorded. Serum cytokines levels of IL-6 and IL-1β were also evaluated by enzyme-linked immunosorbent assay. Substantial amounts of tetracycline, from hybrid constructs, were released for 2 weeks. The medium containing the released tetracycline did not affect the adhesion or viability of rBMSCs; however, it inhibited the proliferation of A. actinomycetemcomitans. Osteogenesis and osseointegration were more marked for the 15% hybrid construct group than the other two groups. The height of attachment and infiltration of inflammatory cells within fibrous tissue was significantly reduced in the experimental groups than the control group. Our protocol resulted in re-osseointegration on a biofilm-contaminated implant. Thus, an antibiotic releasing inorganic/organic construct may offer a therapeutic option to suppress infection and promote guided tissue regeneration thereby serving as an integrated multi-layer substitute for both hard/soft tissues.
Collapse
Affiliation(s)
- Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mahmood S Mozaffari
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Di Yan
- Department of Oral and Maxillofacial Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Sun
- Department of Oral and Maxillofacial Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Huang G, Fan Z, Li L, Lu Y, Lin J. Corrosion Resistance of Selective Laser Melted Ti6Al4V3Cu Alloy Produced Using Pre-Alloyed and Mixed Powder. MATERIALS 2022; 15:ma15072487. [PMID: 35407820 PMCID: PMC8999544 DOI: 10.3390/ma15072487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Metallic elemental powder mixture and pre-alloyed metallic powder are both frequently used powder feedstock in the additive manufacturing process. However, little research has been conducted to compare the corrosion behavior of selective laser melting (SLM) alloys, fabricated by pre-alloyed metallic powder and mixed metallic powder. Hence, it is important to investigate the corrosion behavior of SLMed alloys, as well as the corresponding cast ingot, with the aim to better understand the feasibility of designing new materials. In this work, the SLM-produced Ti6Al4V3Cu alloys were manufactured using a metallic elemental powder mixture and pre-alloyed metallic powder, respectively. The corrosion behavior of the different Ti6Al4V3Cu alloys was investigated in following electrochemical tests and ion release measurements. The results showed that the Ti6Al4V3Cu alloy prepared by pre-alloyed metallic powder showed better corrosion resistance than that produced from mixed metallic powder. Moreover, the SLM-produced Ti6Al4V3Cu alloys performed significantly better in corrosion resistance than the cast Ti6Al4V3Cu. The results are expected to achieve a better understanding of the feasibility of designing new materials using mixed powders, contributing to reducing development costs and cycles.
Collapse
Affiliation(s)
- Gonghao Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (G.H.); (Z.F.); (L.L.)
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Zefeng Fan
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (G.H.); (Z.F.); (L.L.)
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Liu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (G.H.); (Z.F.); (L.L.)
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanjin Lu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (G.H.); (Z.F.); (L.L.)
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Correspondence: (Y.L.); (J.L.)
| | - Jinxin Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (G.H.); (Z.F.); (L.L.)
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Correspondence: (Y.L.); (J.L.)
| |
Collapse
|
29
|
Wu Y, Zhou H, Zeng Y, Xie H, Ma D, Wang Z, Liang H. Recent Advances in Copper-Doped Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2342. [PMID: 35407675 PMCID: PMC8999642 DOI: 10.3390/ma15072342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Titanium (Ti) and its alloys have been extensively used as implant materials in clinical practice due to their high corrosion resistance, light weight and excellent biocompatibility. However, the insufficient intrinsic osteogenic capacity of Ti and its alloys impedes bone repair and regeneration, and implant-related infection or inflammation remains the leading cause of implant failure. Bacterial infections or inflammatory diseases constitute severe threats to human health. The physicochemical properties of the material are critical to the success of clinical procedures, and the doping of Cu into Ti implants has been confirmed to be capable of enhancing the bone repair/regeneration, angiogenesis and antibacterial capability. This review outlines the recent advances in the design and preparation of Cu-doped Ti and Ti alloy implants, with a special focus on various methods, including plasma immersion implantation, magnetron sputtering, galvanic deposition, microarc oxidation and sol-gel synthesis. More importantly, the antibacterial and mechanical properties as well as the corrosion resistance and biocompatibility of Cu-doped Ti implants from different methods are systematically reviewed, and their prospects and limitations are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhoucheng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.W.); (H.Z.); (Y.Z.); (H.X.); (D.M.)
| | - Hanfeng Liang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.W.); (H.Z.); (Y.Z.); (H.X.); (D.M.)
| |
Collapse
|
30
|
Li S, Huan Y, Zhu B, Chen H, Tang M, Yan Y, Wang C, Ouyang Z, Li X, Xue J, Wang W. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:2. [PMID: 34940930 PMCID: PMC8702412 DOI: 10.1007/s10856-021-06609-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/06/2021] [Indexed: 05/26/2023]
Abstract
Anterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the deepening research on metal materials, the properties of these materials have been developed from being biologically inert to having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized. Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed. Fig.a.b.c.d.e.f.g As a pre-selected image for the cover, I really look forward to being selected. Special thanks to you for your comments.
Collapse
Affiliation(s)
- Shan Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
- Plastic and Cosmetic Surgery, Hunan Want Want Hospital, Changsha, China
| | - Yifan Huan
- R&D Department, Hunan Yuanpin Cell Biotechnology Co. Ltd., Changsha, China
| | - Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Haoxiang Chen
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Ming Tang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Zhihua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Xuelin Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Jingbo Xue
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
31
|
Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9011226. [PMID: 34812267 PMCID: PMC8605911 DOI: 10.1155/2021/9011226] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Biomaterials applications have rapidly expanded into different fields of sciences. One of the important fields of using biomaterials is dentistry, which can facilitate implantation, surgery, and treatment of oral diseases such as peri-implantitis, periodontitis, and other dental problems. Drug delivery systems based on biocompatible materials play a vital role in the release of drugs into aim tissues of the oral cavity with minimum side effects. Therefore, scientists have studied various delivery systems to improve the efficacy and acceptability of therapeutic approaches in dental problems and oral diseases. Also, biomaterials could be utilized as carriers in biocompatible drug delivery systems. For instance, natural polymeric substances, such as gelatin, chitosan, calcium phosphate, alginate, and xanthan gum are used to prepare different forms of delivery systems. In addition, some alloys are conducted in drug complexes for the better in transportation. Delivery systems based on biomaterials are provided with different strategies, although individual biomaterial has advantages and disadvantages which have a significant influence on transportation of complex such as solubility in physiological environments or distribution in tissues. Biomaterials have antibacterial and anti-inflammatory effects and prolonged time contact and even enhance antibiotic activities in oral infections. Moreover, these biomaterials are commonly prepared in some forms such as particulate complex, fibers, microspheres, gels, hydrogels, and injectable systems. In this review, we examined the application of biocompatible materials in drug delivery systems of oral and dental diseases or problems.
Collapse
|
32
|
Vanmunster L, D'Haeyer C, Coucke P, Braem A, Van Hooreweder B. Mechanical behavior of Ti6Al4V produced by laser powder bed fusion with engineered open porosity for dental applications. J Mech Behav Biomed Mater 2021; 126:104974. [PMID: 34883458 DOI: 10.1016/j.jmbbm.2021.104974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/14/2023]
Abstract
Implant failure due to biofilm formation is a substantial problem in the field of dental prosthetics. A solution has been proposed in the form of implants with a built-in drug reservoir, but combining sufficient strength and longevity with controlled release capability has proven difficult. This work investigates the feasibility of using laser powder bed fusion to create Ti6Al4V structures with open pore channels while maintaining their mechanical stability. These interconnected pore channels are generated by increasing the distance between consecutive melt pools, denominated as oversized hatch spacing. The impact of varying hatch spacing, laser power and scan speed on the degree of porosity was examined, with both an increase in hatch spacing and a decrease in energy density leading to higher porosity. The pore channels were found to be fully interconnected at total porosity values of 14% or more. The compressive modulus, yield strength and ultimate compressive strength are shown to be strongly related to the density of the structure. Based on the minimal strength and full interconnectivity requirements, the optimal additive manufacturing building conditions were determined. The fatigue properties of the resulting samples were investigated under uniaxial and under inclined compression-compression testing according to ISO 14801, which indicated an endurance limit of 217 MPa in the heat treated state. The results indicate that the use of an oversized hatch spacing is suitable for engineering open porous networks.
Collapse
Affiliation(s)
- Lars Vanmunster
- KU Leuven, Department of Mechanical Engineering - Celestijnenlaan 300, 3001 Leuven, Belgium.
| | - Camille D'Haeyer
- KU Leuven, Department of Materials Engineering - Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Pauline Coucke
- KU Leuven, Department of Materials Engineering - Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering - Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Brecht Van Hooreweder
- KU Leuven, Department of Mechanical Engineering - Celestijnenlaan 300, 3001 Leuven, Belgium
| |
Collapse
|
33
|
Juanes-Gusano D, Santos M, Reboto V, Alonso M, Rodríguez-Cabello JC. Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers. J Pept Sci 2021; 28:e3362. [PMID: 34545666 DOI: 10.1002/psc.3362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
Despite lacking cooperatively folded structures under native conditions, numerous intrinsically disordered proteins (IDPs) nevertheless have great functional importance. These IDPs are hybrids containing both ordered and intrinsically disordered protein regions (IDPRs), the structure of which is highly flexible in this unfolded state. The conformational flexibility of these disordered systems favors transitions between disordered and ordered states triggered by intrinsic and extrinsic factors, folding into different dynamic molecular assemblies to enable proper protein functions. Indeed, prokaryotic enzymes present less disorder than eukaryotic enzymes, thus showing that this disorder is related to functional and structural complexity. Protein-based polymers that mimic these IDPs include the so-called elastin-like polypeptides (ELPs), which are inspired by the composition of natural elastin. Elastin-like recombinamers (ELRs) are ELPs produced using recombinant techniques and which can therefore be tailored for a specific application. One of the most widely used and studied characteristic structures in this field is the pentapeptide (VPGXG)n . The structural disorder in ELRs probably arises due to the high content of proline and glycine in the ELR backbone, because both these amino acids help to keep the polypeptide structure of elastomers disordered and hydrated. Moreover, the recombinant nature of these systems means that different sequences can be designed, including bioactive domains, to obtain specific structures for each application. Some of these structures, along with their applications as IDPs that self-assemble into functional vesicles or micelles from diblock copolymer ELRs, will be studied in the following sections. The incorporation of additional order- and disorder-promoting peptide/protein domains, such as α-helical coils or β-strands, in the ELR sequence, and their influence on self-assembly, will also be reviewed. In addition, chemically cross-linked systems with controllable order-disorder balance, and their role in biomineralization, will be discussed. Finally, we will review different multivalent IDPs-based coatings and films for different biomedical applications, such as spatially controlled cell adhesion, osseointegration, or biomaterial-associated infection (BAI).
Collapse
Affiliation(s)
- Diana Juanes-Gusano
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Virginia Reboto
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| |
Collapse
|
34
|
Budimir M, Marković Z, Vajdak J, Jovanović S, Kubat P, Humpoliček P, Mičušik M, Danko M, Barras A, Milivojević D, Špitalsky Z, Boukherroub R, Marković BT. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
36
|
Adjuvant Effect of Titanium Brushes in Peri-Implant Surgical Treatment: A Systematic Review. Dent J (Basel) 2021; 9:dj9080084. [PMID: 34435996 PMCID: PMC8393649 DOI: 10.3390/dj9080084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/05/2022] Open
Abstract
Background: the prognosis of peri-implant surgery can be affected by poor decontamination of the implant surface, which could be improved with the use of titanium brushes. The objectives of this systematic review were to evaluate the effectiveness of titanium brushes in the decontamination of the implant surface in terms of plaque index, probing depth, bleeding on probing and bone loss/gain; as well as its effectiveness according to the type of peri-implant bone defect. Methods: an electronic search was carried out in the PubMed, Scopus, Cochrane and Embase databases, as well as a manual search. The search strategy included four keywords: “Peri-implantitis”, “Periimplantitis”, “Implant Surface Decontamination” and “Titanium Brush”. Randomized controlled studies published in the last 10 years were included and systematic reviews, in vitro studies and animal studies were excluded. Results: 142 references were found, from which only four articles met the inclusion criteria. All of the studies included in the present review reported beneficial results in terms of probing depth, gingival index and radiographic bone loss and gain after implant surface decontamination adjuvated by titanium brushes. Conclusions: titanium rotary brushes show improvements in the evolution and prognosis of peri-implant surgery, although more long-term studies are needed to draw more solid conclusions.
Collapse
|
37
|
Antimicrobial Properties of Strontium Functionalized Titanium Surfaces for Oral Applications, A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11070810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this systematic review was to assess the current scientific evidence of the antimicrobial potential of strontium (Sr) when used to functionalize titanium (Ti) for oral applications. Out of an initial list of 1081 potentially relevant publications identified in three electronic databases (MEDLINE via PubMed, Scopus, and Cochrane) up to 1 February 2021, nine publications based on in vitro studies met the inclusion criteria. The antimicrobial potential of Sr was investigated on different types of functionalized Ti substrates, employing different application methods. Nine studies reported on the early, i.e., 6–24 h, and two studies on the late, i.e., 7–28 days, antimicrobial effect of Sr, primarily against Staphylococcus aureus (S. aureus) and/or Escherichia coli (E. coli). Sr-modified samples demonstrated relevant early antimicrobial potential against S. aureus in three studies; only one of which presented statistical significance values, while the other two presented only the percentage of antimicrobial rate and biofilm inhibition. A relevant late biofilm inhibition potential against S. aureus of 40% and 10%—after 7 and 14 days, respectively—was reported in one study. Combining Sr with other metal ions, i.e., silver (Ag), zinc (Zn), and fluorine (F), demonstrated a significant antimicrobial effect and biofilm inhibition against both S. aureus and E. coli. Sr ion release within the first 24 h was generally low, i.e., below 50 µg/L and 0.6 ppm; however, sustained Sr ion release for up to 30 days, while maintaining up to 90% of its original content, was also demonstrated. Thus, in most studies included herein, Sr-functionalized Ti showed a limited immediate (i.e., 24 h) antimicrobial effect, likely due to a low Sr ion release; however, with an adequate Sr ion release, a relevant antimicrobial effect, as well as a biofilm inhibition potential against S. aureus—but not E. coli—was observed at both early and late timepoints. Future studies should assess the antimicrobial potential of Ti functionalized with Sr against multispecies biofilms associated with peri-implantitis.
Collapse
|
38
|
Shaw ZL, Kuriakose S, Cheeseman S, Mayes ELH, Murali A, Oo ZY, Ahmed T, Tran N, Boyce K, Chapman J, McConville CF, Crawford RJ, Taylor PD, Christofferson AJ, Truong VK, Spencer MJS, Elbourne A, Walia S. Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17340-17352. [PMID: 33844492 DOI: 10.1021/acsami.1c01739] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Antimicrobial resistance has rendered many conventional therapeutic measures, such as antibiotics, ineffective. This makes the treatment of infections from pathogenic micro-organisms a major growing health, social, and economic challenge. Recently, nanomaterials, including two-dimensional (2D) materials, have attracted scientific interest as potential antimicrobial agents. Many of these studies, however, rely on the input of activation energy and lack real-world utility. In this work, we present the broad-spectrum antimicrobial activity of few-layered black phosphorus (BP) at nanogram concentrations. This property arises from the unique ability of layered BP to produce reactive oxygen species, which we harness to create this unique functionality. BP is shown to be highly antimicrobial toward susceptible and resistant bacteria and fungal species. To establish cytotoxicity with mammalian cells, we showed that both L929 mouse and BJ-5TA human fibroblasts were metabolically unaffected by the presence of BP. Finally, we demonstrate the practical utility of this approach, whereby medically relevant surfaces are imparted with antimicrobial properties via functionalization with few-layer BP. Given the self-degrading properties of BP, this study demonstrates a viable and practical pathway for the deployment of novel low-dimensional materials as antimicrobial agents without compromising the composition or nature of the coated substrate.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne 3001, Victoria, Australia
| | - Sruthi Kuriakose
- Functional Materials and Microsystems Research Group and Micro Nano Research Facility, RMIT University, Melbourne 3001, Victoria, Australia
| | - Samuel Cheeseman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Edwin L H Mayes
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne 3000, Victoria, Australia
| | - Alishiya Murali
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia
- CSIRO Biomedical Manufacturing, Clayton 3168, Victoria, Australia
| | - Zay Yar Oo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia
- CSIRO Biomedical Manufacturing, Clayton 3168, Victoria, Australia
| | - Taimur Ahmed
- Functional Materials and Microsystems Research Group and Micro Nano Research Facility, RMIT University, Melbourne 3001, Victoria, Australia
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Kylie Boyce
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | | | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Patrick D Taylor
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Andrew J Christofferson
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Michelle J S Spencer
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne 3001, Victoria, Australia
- Functional Materials and Microsystems, Research Group and Micro Nano Research Facility, RMIT University, Melbourne 3001, Victoria, Australia
| |
Collapse
|
39
|
Liu Z, Liu X, Ramakrishna S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J 2021; 16:e2000116. [PMID: 33813785 DOI: 10.1002/biot.202000116] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The success of biomedical implants in orthopedic and dental applications is usually limited due to insufficient bone-implant integration, and implant-related infections. Biointerfaces are critical in regulating their interactions and the desirable performance of biomaterials in biological environment. Surface engineering has been widely studied to realize better control of the interface interaction to further enhance the desired behavior of biomaterials. PURPOSE AND SCOPE This review aims to investigate surface coating strategies in hard tissue applications to address insufficient osteointegration and implant-related infection problems. SUMMARY We first focused on surface coatings to enhance the osteointegration and biocompatibility of implants by emphasizing calcium phosphate-related, nanoscale TiO2 -related, bioactive tantalum-based and biomolecules incorporated coatings. Different coating strategies such as plasma spraying, biomimetic deposition, electrochemical anodization and LENS are discussed. We then discussed techniques to construct anti-adhesive and bactericidal surface while emphasizing multifunctional surface coating techniques that combine potential osteointegration and antibacterial activities. The effects of nanotopography via TiO2 coatings on antibacterial performance are interesting and included. A smart bacteria-responsive titanium dioxide nanotubes coating is also attractive and elaborated. CONCLUSION Developing multifunctional surface coatings combining osteogenesis and antimicrobial activity is the current trend. Surface engineering methods are usually combined to obtain hierarchical multiscale surface structures with better biofunctionalization outcomes.
Collapse
Affiliation(s)
- Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Liu YC, Lee YT, Huang TC, Lin GS, Chen YW, Lee BS, Tung KL. In Vitro Bioactivity and Antibacterial Activity of Strontium-, Magnesium-, and Zinc-Multidoped Hydroxyapatite Porous Coatings Applied via Atmospheric Plasma Spraying. ACS APPLIED BIO MATERIALS 2021; 4:2523-2533. [PMID: 35014370 DOI: 10.1021/acsabm.0c01535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The beneficial effects of Sr- and Mg-doped hydroxyapatite (HAp) on osteoblast proliferation and bone regeneration have been investigated in the past, and the antibacterial ability of Zn ions is well known. However, HAp coatings doped with these three elements via thermal spraying have not yet been investigated. In this study, HAp powder was synthesized at different pH values (4, 6, 8, and 10) and calcined at different temperatures (200, 400, 600, 800, and 1000 °C) to obtain HAp with the highest purity. Subsequently, strontium-, magnesium-, and zinc-doped HAp powders were synthesized at the optimal pH value and calcination temperature. The HAp powder was then coated onto Ti disks using atmospheric plasma spraying (APS) or vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) techniques at different working currents (350, 400, and 450 A) and spraying distances (10 and 15 cm). X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy equipped with energy-dispersive spectroscopy were used for material characterization to determine the optimal parameters. With these optimal coating parameters, HAp, Zn-HAp, SrMg-HAp, and ZnSrMg-HAp powders were deposited onto the Ti disks using VIPF-APS and named HAp-Ti, Zn-HAp-Ti, SrMg-HAp-Ti, and ZnSrMg-HAp-Ti, respectively. The in vitro bioactivity of these four groups was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and alkaline phosphatase (ALPase) activity assay. Besides, the antibacterial activities against Prevotella nigrescens, Porphyromonas gingivalis, and Fusobacterium nucleatum were assessed. The results showed that the purity of HAp synthesized at pH 10 and 800 °C was 98.40%. A porous coating without cracks was obtained at a 10 cm spraying distance and 400 A working current using VIPF-APS. SrMg-HAp-Ti and ZnSrMg-HAp-Ti resulted in higher osteoblast proliferation and ALPase activity than the control. Moreover, both Zn-HAp-Ti and ZnSrMg-HAp-Ti exhibited antibacterial activity against the three bacteria. Therefore, ZnSrMg-HAp has potential as a coating for biomedical materials due to its ability to reduce bacterial infection and enhance osseointegration.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Advanced Research Center for Green Materials Science and Technology and Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ying-Te Lee
- Graduate Institute of Oral Biology, School of Dentistry, and National Taiwan University Hospital, National Taiwan University, Taipei 106, Taiwan
| | - Tse-Chiang Huang
- Advanced Research Center for Green Materials Science and Technology and Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Geng-Sheng Lin
- Advanced Research Center for Green Materials Science and Technology and Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, and National Taiwan University Hospital, National Taiwan University, Taipei 106, Taiwan
| | - Bor-Shiunn Lee
- Graduate Institute of Oral Biology, School of Dentistry, and National Taiwan University Hospital, National Taiwan University, Taipei 106, Taiwan
| | - Kuo-Lun Tung
- Advanced Research Center for Green Materials Science and Technology and Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
41
|
Gonçalves IMR, Herrero ER, Carvalho O, Henriques B, Silva FS, Teughels W, Souza JCM. Antibiofilm effects of titanium surfaces modified by laser texturing and hot-pressing sintering with silver. J Biomed Mater Res B Appl Biomater 2021; 109:1588-1600. [PMID: 33622023 DOI: 10.1002/jbm.b.34817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 11/07/2022]
Abstract
Peri-implant diseases are one of the main causes of dental implant failure. New strategies for dental implants manufacturing have been developed to prevent the accumulation of bacteria and related inflammatory reactions. The main aim of this work was to develop laser-treated titanium surfaces covered with silver that generate a electrical dipole to inhibit the oral bacteria accumulation. Two approaches were developed for that purpose. In one approach a pattern of different titanium dioxide thickness was produced on the titanium surface, using a Q-Switched Nd:YAG laser system operating at 1064 nm. The second approach was to incorporate silver particles on a laser textured titanium surface. The incorporation of the silver was performed by laser sintering and hot-pressing approaches. The anti-biofilm effect of the discs were tested against biofilms involving 14 different bacterial strains growth for 24 and 72 hr. The morphological aspects of the surfaces were evaluated by optical and field emission guns scanning electronical microscopy (FEGSEM) and therefore the wettability and roughness were also assessed. Physicochemical analyses revealed that the test surfaces were hydrophilic and moderately rough. The oxidized titanium surfaces showed no signs of antibacterial effects when compared to polished discs. However, the discs with silver revealed a decrease of accumulation of Porphyromonas gingivalis and Prevotella intermedia strains. Thus, the combination of Nd:YAG laser irradiation and hot-pressing was effective to produce silver-based patterns on titanium surfaces to inhibit the growth of pathogenic bacterial species. The laser parameters can be optimized to achieve different patterns, roughness, and thickness of the modified titanium layer regarding the type and region of the implant.
Collapse
Affiliation(s)
- Inês M R Gonçalves
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Braga, 4800-058, Portugal
| | - Esteban R Herrero
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Oscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Braga, 4800-058, Portugal
| | - Bruno Henriques
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Braga, 4800-058, Portugal
| | - Filipe S Silva
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Braga, 4800-058, Portugal
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Júlio C M Souza
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Braga, 4800-058, Portugal.,Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra PRD, 4585-116, Portugal
| |
Collapse
|
42
|
Antimicrobial Potential of Strontium Hydroxide on Bacteria Associated with Peri-Implantitis. Antibiotics (Basel) 2021; 10:antibiotics10020150. [PMID: 33546189 PMCID: PMC7913193 DOI: 10.3390/antibiotics10020150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Peri-implantitis due to infection of dental implants is a common complication that may cause significant patient morbidity. In this study, we investigated the antimicrobial potential of Sr(OH)2 against different bacteria associated with peri-implantitis. Methods: The antimicrobial potential of five concentrations of Sr(OH)2 (100, 10, 1, 0.1, and 0.01 mM) was assessed with agar diffusion test, minimal inhibitory concentration (MIC), and biofilm viability assays against six bacteria commonly associated with biomaterial infections: Streptococcus mitis, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Escherichia coli, and Fusobacterium nucleatum. Results: Zones of inhibition were only observed for, 0.01, 0.1, and 1 mM of Sr(OH)2 tested against P. gingivalis, in the agar diffusion test. Growth inhibition in planktonic cultures was achieved at 10 mM for all species tested (p < 0.001). In biofilm viability assay, 10 and 100 mM Sr(OH)2 showed potent bactericidal affect against S. mitis, S. epidermidis, A. actinomycetemcomitans, E. coli, and P. gingivalis. Conclusions: The findings of this study indicate that Sr(OH)2 has antimicrobial properties against bacteria associated with peri-implantitis.
Collapse
|
43
|
Ye Z, Zhu X, Mutreja I, Boda SK, Fischer NG, Zhang A, Lui C, Qi Y, Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater 2021; 6:2250-2260. [PMID: 33553813 PMCID: PMC7829078 DOI: 10.1016/j.bioactmat.2020.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Infection in hard tissue regeneration is a clinically-relevant challenge. Development of scaffolds with dual function for promoting bone/dental tissue growth and preventing bacterial infections is a critical need in the field. Here we fabricated hybrid scaffolds by intrafibrillar-mineralization of collagen using a biomimetic process and subsequently coating the scaffold with an antimicrobial designer peptide with cationic and amphipathic properties. The highly hydrophilic mineralized collagen scaffolds provided an ideal substrate to form a dense and stable coating of the antimicrobial peptides. The amount of hydroxyapatite in the mineralized fibers modulated the rheological behavior of the scaffolds with no influence on the amount of recruited peptides and the resulting increase in hydrophobicity. The developed scaffolds were potent by contact killing of Gram-negative Escherichia coli and Gram-positive Streptococcus gordonii as well as cytocompatible to human bone marrow-derived mesenchymal stromal cells. The process of scaffold fabrication is versatile and can be used to control mineral load and/or intrafibrillar-mineralized scaffolds made of other biopolymers. A biomimetic intrafibrillar-mineralized scaffold was prepared using a non-classical pathway for mineralization. The mineralized scaffold was stably coated with designer antimicrobial peptide GL13K. The hybrid scaffold was cytocompatible and potent against biofilms of model Gram-positive and Gram-negative bacteria. The mineral content affected the rheological properties of the scaffolds, but not the loading of antimicrobial peptides.
Collapse
Affiliation(s)
- Zhou Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Xiao Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Sunil Kumar Boda
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Anqi Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Christine Lui
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| |
Collapse
|
44
|
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9:1530-1546. [DOI: 10.1039/d0bm01747g] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hydrogel dressings with various functions for diabetic wound treatment.
Collapse
Affiliation(s)
- Heni Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
45
|
Vandamme K, Thevissen K, Mesquita MF, Coropciuc RG, Agbaje J, Thevissen P, da Silva WJ, Vleugels J, De Cremer K, Gerits E, Martens JA, Michiels J, Cammue BPA, Braem A. Implant functionalization with mesoporous silica: A promising antibacterial strategy, but does such an implant osseointegrate? Clin Exp Dent Res 2020; 7:502-511. [PMID: 33382539 PMCID: PMC8404489 DOI: 10.1002/cre2.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Objectives New strategies for implant surface functionalization in the prevention of peri‐implantitis while not compromising osseointegration are currently explored. The aim of this in vivo study was to assess the osseointegration of a titanium‐silica composite implant, previously shown to enable controlled release of therapeutic concentrations of chlorhexidine, in the Göttingen mini‐pig oral model. Material and Methods Three implant groups were designed: macroporous titanium implants (Ti‐Porous); macroporous titanium implants infiltrated with mesoporous silica (Ti‐Porous + SiO2); and conventional titanium implants (Ti‐control). Mandibular last premolar and first molar teeth were extracted bilaterally and implants were installed. After 1 month healing, the bone in contact with the implant and the bone regeneration in the peri‐implant gap was evaluated histomorphometrically. Results Bone‐to‐implant contact and peri‐implant bone volume for Ti‐Porous versus Ti‐Porous + SiO2 implants did not differ significantly, but were significantly higher in the Ti‐Control group compared with Ti‐Porous + SiO2 implants. Functionalization of titanium implants via infiltration of a SiO2 phase into the titanium macropores does not seem to inhibit implant osseointegration. Yet, the importance of the implant macro‐design, in particular the screw thread design in a marginal gap implant surgery set‐up, was emphasized by the outstanding results of the Ti‐Control implant. Conclusions Next‐generation implants made of macroporous Ti infiltrated with mesoporous SiO2 do not seem to compromise the osseointegration process. Such implant functionalization may be promising for the prevention and treatment of peri‐implantitis given the evidenced potential of mesoporous SiO2 for controlled drug release.
Collapse
Affiliation(s)
- Katleen Vandamme
- Department of Oral Health Sciences & Restorative Dentistry, Biomaterials-BIOMAT, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Marcelo F Mesquita
- Department of Oral Health Sciences & Restorative Dentistry, Biomaterials-BIOMAT, KU Leuven & University Hospitals Leuven, Leuven, Belgium.,Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Ruxandra-Gabriella Coropciuc
- Oral and Maxillo-facial Surgery, Imaging & Pathology (OMFS-IMPATH), Department of Oral Health Sciences & Department of Imaging and Pathology, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | - Jimoh Agbaje
- Oral and Maxillo-facial Surgery, Imaging & Pathology (OMFS-IMPATH), Department of Oral Health Sciences & Department of Imaging and Pathology, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | - Patrick Thevissen
- Forensic Odontology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wander José da Silva
- Department of Oral Health Sciences & Restorative Dentistry, Biomaterials-BIOMAT, KU Leuven & University Hospitals Leuven, Leuven, Belgium.,Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Jozef Vleugels
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Centre of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Evelien Gerits
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Johan A Martens
- Centre of Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Centre of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Annabel Braem
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Ueda T, Sato N, Koizumi R, Ueda K, Ito K, Ogasawara K, Narushima T. Formation of carbon-added anatase-rich TiO 2 layers on titanium and their antibacterial properties in visible light. Dent Mater 2020; 37:e37-e46. [PMID: 33198964 DOI: 10.1016/j.dental.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To avoid risk of infections associated with dental implants, thermal oxidation processes for practical dental Ti alloys were studied for both high bonding strength and antibacterial properties in visible light. METHODS Two-step thermal oxidation, comprising carburization (first step of treatment: in Ar-1%CO gas) and subsequent oxidation (second step of treatment: in air), was conducted on commercially pure (CP) Ti, Ti-6Al-4V (Ti64), and Ti-6Al-7Nb (Ti67) alloys to form TiO2 layers. Their bonding strengths and antibacterial properties against Escherichia coli (E. coli) in visible light (λ ≥ 400 nm) were evaluated. RESULTS TiO2 layers formed on each metal were composed of anatase and/or rutile. Anatase fraction and carbon concentration in the layers decreased with increasing temperature in the second step of treatment. Antibacterial properties of the TiO2 layers were dependent on the temperature in the second step of treatment. An approximate antibacterial activity value of 2 (killing ∼99% bacteria) was obtained when the temperatures in the second step of treatment were 673 and 773 K for CP Ti, 773 K for Ti64, and 773 and 873 K for Ti67. It was found that the TiO2 layer must contain carbon and be anatase-rich to exhibit excellent antibacterial properties. Bonding strength between the substrate and TiO2 layers formed at 773 K in the second step of treatment exceeded 80 MPa and was independent of substrate type. SIGNIFICANCE TiO2 layers, possessing both high bonding strength and excellent antibacterial properties, were successfully formed on practical dental Ti alloys via two-step thermal oxidation.
Collapse
Affiliation(s)
- Takatoshi Ueda
- Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Naoki Sato
- Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ryusuke Koizumi
- Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kyosuke Ueda
- Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Koyu Ito
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takayuki Narushima
- Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaragi 305-0047, Japan.
| |
Collapse
|
47
|
Alenezi A, Chrcanovic B. Effects of the local administration of antibiotics on bone formation on implant surface in animal models: A systematic review and meta-analysis. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:177-183. [PMID: 33294060 PMCID: PMC7701187 DOI: 10.1016/j.jdsr.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/25/2020] [Accepted: 09/19/2020] [Indexed: 12/09/2022] Open
Abstract
PURPOSE This review aimed to evaluate the effects of the local delivery of antibiotics incorporated in implant surfaces on some quantitative parameters of bone formation. MATERIALS AND METHODS An electronic search was undertaken in three databases (PubMed, Scopus, Embase) in addition to hand searching. The search was limited to animal experiments using endosseous implants combined with localized antibiotics release. Meta-analyses were performed for the percentages of bone volume (BV) and bone-to-implant contact (BIC). RESULTS Nine studies met the inclusion criteria. Several methods were identified for local delivery of antibiotics at the bone-implant interface, but the most commonly used method was by coating (incorporating the implant surface with the antibiotic agents). Different antibiotic agents were used, namely bacitracin, doxycycline, enoxacin, gentamicin, minocycline, tobramycin, and vancomycin. There was no statistically significant difference in the percentage of BIC between implants with or without localized antibiotic release (P = 0.59). The meta-analysis revealed higher BV around implants coated with antibiotics compared to control groups (without antibiotics) (P < 0.01). CONCLUSION It is suggested that the local administration of antibiotics around implants did not adversely affect the percentage of direct bone contact around implants, with a tendency for a slightly better bone formation around implants when combined with local administration of antibiotics. It is a matter of debate whether these in vivo results will have the same effect in the clinical setting. However, the risk of bias of these studies may, to some extent, question the validity of these results.
Collapse
Affiliation(s)
- Ali Alenezi
- Department of Prosthodontics, College of Dentistry, Qassim University, Saudi Arabia
| | - Bruno Chrcanovic
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
48
|
Patil S, GS V, Baeshen H, Ali Sumayli MA, Saeed AlShahrani MA, Alkhallaf Najmi AI, Jafer MA, Vishwanathaiah S, Khan S. Current trends and future prospects of chemical management of oral biofilms. J Oral Biol Craniofac Res 2020; 10:660-664. [PMID: 32995256 PMCID: PMC7501456 DOI: 10.1016/j.jobcr.2020.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
Oral biofilm, a tribulation encountered on a general basis is known to associate and contribute to many oral and systemic diseases. Eradication of these biofilms is a primary step in treatment of the underlying malady. Management of a biofilm is governed by various factors: the microenvironment within a biofilm, bond between the adhered surface and the biofilm, location of the biofilm, access to the biofilm for removal. Though annihilation is the priority, the mode of approach to achieve the same is equally important, because biofilm's heterogenic nature and location govern the strategical treatment required. Literature supports that the consequences of oral biofilms is not restricted to its home ground, but disseminated to other systems of the body. This contemplates us to procure knowledge on its development, structure and progression to aim its eradication. Therefore, this review attempts to recognize the type of biofilm based on location and enumerate all the possible chemical modes of management for the specific type of oral biofilms encountered. In addition, to the traditional strategies prescribed or administered, newer approaches which are gaining popularity due to their ease and efficiency are also addressed. Frontiers in the above field, under investigation and promising in near future are also compiled. Thus, the present review aims to provide a comprehensive elucidation of chemical management of oral biofilms, both the conventional and novel approaches under investigation.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Vidya GS
- Sree NRJV Specialists Dental Clinic, Bangalore, India
| | - Hosam Baeshen
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | - Mohammed Abdurabu Jafer
- Department of Preventive Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Health Promotion Unit, Maastricht University, the Netherlands
| | - Satish Vishwanathaiah
- Department of Preventive Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Shahrukh Khan
- School of Nursing and Midwifery, Faculty of Health, Deakin University, Geelong, Australia
- Alfred Health Partnership, Melbourne, Australia
- Centre for Rural Health, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
49
|
Zhang B, Li J, He L, Huang H, Weng J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomater 2020; 114:431-448. [PMID: 32682055 DOI: 10.1016/j.actbio.2020.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
In view of the fact that titanium (Ti)-based implants still face the problem of loosening and failure of the implants caused by the slow biological response, the low osseointegration rate and the implant bacterial infection in clinical application, we designed a cancellous bone-like biomimetic Ti scaffold using the template accumulated by sugar spheres as a pore-forming agent. And based on a modified surface mineralization process and mussel-like adhesion mechanism, a silicon-doped calcium phosphate composite coating (Van-pBNPs/pep@pSiCaP) with Vancomycin (Van)-loaded polydopamine (pDA)-modified albumin nanoparticles (Van-pBNPs) and cell adhesion peptides (GFOGER) was constructed on the surface of Ti scaffold for mimicking the extracellular matrix (ECM) microenvironment of natural bone matrix to induce greater tissue regeneration. The in vitro study demonstrated that this porous Ti scaffold with functional bio-surface could distinctly facilitate cell early adhesion and spreading, and activate the expression of α2β1 integrin receptor on the cell membrane through promoting the formation of focal adhesions (FAs) in bone marrow stromal cells (BMSCs), thus mediating greater osteogenic cell differentiation. And it could also effectively inhibit the adhesion and growth of Staphylococcus epidermidis, exhibiting good antibacterial properties. Moreover, the Van-pBNPs/pep@pSiCaP-Ti scaffolds showed enhanced in vivo bone-forming ability due to the contributions of bioactive chemical components and the natural cancellous bone-like macrostructure. This work offers a promising structural and functional bio-inspired strategy for designing metal implants with desirable ability of osteoinduction synergistically with antibacterial efficacy for promoting bone regeneration and infection prevention simultaneously. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making porous Ti scaffolds with a natural cancellous bone-like structure. Besides, a functional bio-surface was constructed on the bionic structure, mimicking some of the functions of the collagen-rich organic matrix and inorganic CaP nanocrystallites of native ECM of bone in chemical components and biological activities. This interconnected inter-pore opening structure encouraged the migration of cells among open macro-pores within the scaffold. In addition, the functionalized surface not only improved early cell adhesion, spreading, stimulated greater osteogenic differentiation of bone-forming cells, but also endowed the scaffold with excellent antibacterial effect. The biomimetic metal implant with multiple biomedical functions designed in this study has a great clinical application potential. This study represents a feasible method for the preparation of biomimetic structure of metal implants and the improvement of their surface biological activity.
Collapse
Affiliation(s)
- Bingjun Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jia Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lei He
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
| |
Collapse
|
50
|
Barrak I, Baráth Z, Tián T, Venkei A, Gajdács M, Urbán E, Stájer A. Effects of different decontaminating solutions used for the treatment of peri-implantitis on the growth of Porphyromonas gingivalis-an in vitro study. Acta Microbiol Immunol Hung 2020; 68:40-47. [PMID: 32845853 DOI: 10.1556/030.2020.01176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
Implants have been considered the treatment of choice to replace missing teeth, unfortunately, peri-implant disease is still an unresolved issue. Contaminated implants may be decontaminated by physical debridement and chemical disinfectants; however, there is a lack of consensus regarding the ideal techniques/agents to be used for the decontamination. The objective of our study was to compare the decontaminating efficacy of different chemical agents on a titanium surface contaminated with Porphyromonas gingivalis, a typical representative of the bacterial flora associated with peri-implantitis. Commercially pure Ti grade 4 discs with a polished surface were treated with a mouthwash containing chlorhexidine digluconate (0.1%), povidone-iodine (PVP-iodine) solution (10%) or citric acid monohydrate (40%). Qualitative and quantitative assessment of cellular growth and survival were assessed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and scanning electron microscopy (SEM). Significant differences in the quantity of P. gingivalis could be observed after 6 days of incubation. A numerical, but not statistically significant (P = 0.066) decrease in the amount of living bacteria was observed in the group treated with the PVP-iodine solution as compared to the control group. The chlorhexidine (CHX)-treated group presented with significantly higher cell counts, as compared to the PVP-iodine-treated group (P = 0.032), while this was not observed compared to the control group and citric acid-treated group. Our results have also been verified by SEM measurements. Our results suggest that for P. gingivalis contamination on a titanium surface in vitro, PVP-iodine is a superior decontaminant, compared to citric acid and chlorhexidine-digulconate solution.
Collapse
Affiliation(s)
- Ibrahim Barrak
- 1Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Szeged, Kálvária sugárút 57., 6720,Szeged, Hungary
| | - Zoltán Baráth
- 2Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 64-66.,Szeged, Hungary
| | - Tamás Tián
- 3Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 64-66.,Szeged, Hungary
| | - Annamária Venkei
- 4Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725, Szeged, Hungary
| | - Márió Gajdács
- 5Institute Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6.,Szeged, Hungary
- 6Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - Edit Urbán
- 7Department of Public Health, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720, Szeged, Hungary
- 8Institute of Translational Medicine, University of Pécs, Medical School, Szigeti utca 12., 7624, Pécs, Hungary
| | - Anette Stájer
- 2Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 64-66.,Szeged, Hungary
| |
Collapse
|