1
|
Todesco M, Casarin M, Sandrin D, Astolfi L, Romanato F, Giuggioli G, Conte F, Gerosa G, Fontanella CG, Bagno A. Hybrid Materials for Vascular Applications: A Preliminary In Vitro Assessment. Bioengineering (Basel) 2024; 11:436. [PMID: 38790303 PMCID: PMC11117917 DOI: 10.3390/bioengineering11050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The production of biomedical devices able to appropriately interact with the biological environment is still a great challenge. Synthetic materials are often employed, but they fail to replicate the biological and functional properties of native tissues, leading to a variety of adverse effects. Several commercial products are based on chemically treated xenogeneic tissues: their principal drawback is due to weak mechanical stability and low durability. Recently, decellularization has been proposed to bypass the drawbacks of both synthetic and biological materials. Acellular materials can integrate with host tissues avoiding/mitigating any foreign body response, but they often lack sufficient patency and impermeability. The present paper investigates an innovative approach to the realization of hybrid materials that combine decellularized bovine pericardium with polycarbonate urethanes. These hybrid materials benefit from the superior biocompatibility of the biological tissue and the mechanical properties of the synthetic polymers. They were assessed from physicochemical, structural, mechanical, and biological points of view; their ability to promote cell growth was also investigated. The decellularized pericardium and the polymer appeared to well adhere to each other, and the two sides were distinguishable. The maximum elongation of hybrid materials was mainly affected by the pericardium, which allows for lower elongation than the polymer; this latter, in turn, influenced the maximum strength achieved. The results confirmed the promising features of hybrid materials for the production of vascular grafts able to be repopulated by circulating cells, thus, improving blood compatibility.
Collapse
Affiliation(s)
- Martina Todesco
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
| | - Martina Casarin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Giustiniani 2, 35128 Padua, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
- Department of Physics and Astronomy ‘G. Galilei’, University of Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Laura Astolfi
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
- Department of Neurosciences, University of Padua, Via Giustiniani, 2, 35128 Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
- Department of Physics and Astronomy ‘G. Galilei’, University of Padova, Via Marzolo 8, 35131 Padova, Italy
- CNR-INFM TASC IOM National Laboratory, S.S. 14 Km 163.5, Basovizza, 34012 Trieste, Italy
| | - Germana Giuggioli
- Department of Prevention Veterinary Services, ULSS 3 Serenissima, P.le S.L Giustiniani 11/D Mestre, 30174 Venice, Italy
| | - Fabio Conte
- Department of Prevention Veterinary Services, ULSS 3 Serenissima, P.le S.L Giustiniani 11/D Mestre, 30174 Venice, Italy
| | - Gino Gerosa
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
- Department of Cardiac, Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Giustiniani 2, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
2
|
Mudigonda J, Xu D, Amedi A, Lane BA, Corporan D, Wang V, Padala M. A Biohybrid Material With Extracellular Matrix Core and Polymeric Coating as a Cell Honing Cardiovascular Tissue Substitute. Front Cardiovasc Med 2022; 9:807255. [PMID: 35402573 PMCID: PMC8987446 DOI: 10.3389/fcvm.2022.807255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the feasibility of a hybrid material in which decellularized pericardial extracellular matrix is functionalized with polymeric nanofibers, for use as a cardiovascular tissue substitute.BackgroundA cardiovascular tissue substitute, which is gradually resorbed and is replaced by host's native tissue, has several advantages. Especially in children and young adults, a resorbable material can be useful in accommodating growth, but also enable rapid endothelialization that is necessary to avoid thrombotic complications. In this study, we report a hybrid material, wherein decellularized pericardial matrix is functionalized with a layer of polymeric nanofibers, to achieve the mechanical strength for implantation in the cardiovascular system, but also have enhanced cell honing capacity.MethodsPericardial sacs were decellularized with sodium deoxycholate, and polycaprolactone-chitosan fibers were electrospun onto the matrix. Tissue-polymer interaction was evaluated using spectroscopic methods, and the mechanical properties of the individual components and the hybrid material were quantified. In-vitro blood flow loop studies were conducted to assess hemocompatibility and cell culture methods were used to assess biocompatibility.ResultsEncapsulation of the decellularized matrix with 70 μm thick matrix of polycaprolactone-chitosan nanofibers, was feasible and reproducible. Spectroscopy of the cross-section depicted new amide bond formation and C–O–C stretch at the interface. An average peel strength of 56.13 ± 11.87 mN/mm2 was measured, that is sufficient to withstand a high shear of 15 dynes/cm2 without delamination. Mechanical strength and extensibility ratio of the decellularized matrix alone were 18,000 ± 4,200 KPa and 0.18 ± 0.03% whereas that of the hybrid was higher at 20,000 ± 6,600 KPa and 0.35 ± 0.20%. Anisotropy index and stiffness of the biohybrid were increased as well. Neither thrombus formation, nor platelet adhesion or hemolysis was measured in the in-vitro blood flow loop studies. Cellular adhesion and survival were adequate in the material.ConclusionEncapsulating a decellularized matrix with a polymeric nanofiber coating, has favorable attributes for use as a cardiovascular tissue substitute.
Collapse
Affiliation(s)
- Jahnavi Mudigonda
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Dongyang Xu
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Alan Amedi
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Brooks A. Lane
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Daniella Corporan
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Vivian Wang
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
| | - Muralidhar Padala
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Muralidhar Padala
| |
Collapse
|
3
|
López-Ruiz E, Venkateswaran S, Perán M, Jiménez G, Pernagallo S, Díaz-Mochón JJ, Tura-Ceide O, Arrebola F, Melchor J, Soto J, Rus G, Real PJ, Diaz-Ricart M, Conde-González A, Bradley M, Marchal JA. Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement. Sci Rep 2017; 7:407. [PMID: 28341826 PMCID: PMC5412652 DOI: 10.1038/s41598-017-00294-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 02/17/2017] [Indexed: 12/02/2022] Open
Abstract
Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels.
Collapse
Affiliation(s)
- Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | | | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Salvatore Pernagallo
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Juan J Díaz-Mochón
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Francisco Arrebola
- Department of Histology, Faculty of Medicine, Institute of Neuroscience, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Melchor
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada, Spain
| | - Juan Soto
- Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada, Spain
| | - Guillermo Rus
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada, Spain
| | - Pedro J Real
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - María Diaz-Ricart
- Department of Hemotherapy and Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, Edinburgh, UK.
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain. .,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.
| |
Collapse
|
4
|
Jiang B, Akgun B, Lam RC, Ameer GA, Wertheim JA. A polymer-extracellular matrix composite with improved thromboresistance and recellularization properties. Acta Biomater 2015; 18:50-8. [PMID: 25712388 PMCID: PMC4395555 DOI: 10.1016/j.actbio.2015.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 01/21/2023]
Abstract
Organ engineering using decellularized scaffolds is a potential long-term solution to donor organ shortage. However, this technology is severely limited by small vessel thrombosis due to incompletely recellularized vessels, resulting in exposure of extracellular matrix (ECM) components to platelets and clotting factors in flowing blood. To address this limitation, we designed a polymer-ECM composite and demonstrated its potential to reduce thrombosis and facilitate re-endothelialization in a vascular graft model. Rat aortas were decellularized using a sequential combination of weak detergents followed by a nuclease treatment that resulted in 96.5±1.3% DNA removal, while ECM components and mechanical properties were well maintained. A biodegradable and biocompatible elastomer poly(1,8 octanediol citrate) (POC, 1wt.%) was infused throughout the ECM at mild conditions (37°C and 45°C) and was functionalized with heparin using carbodiimide chemistry. The polymer-ECM composite significantly reduced platelet adhesion (67.4±8.2% and 82.7±9.6% reduction relative to untreated ECM using one of two processing temperatures, 37°C or 45°C, respectively); inhibited whole blood clotting (85.9±4.3% and 87.0±11.9% reduction relative to untreated ECM at 37°C or 45°C processing temperature, respectively); and supported endothelial cell-and to a lesser extent smooth muscle cell-adhesion in vitro. Taken together, this novel POC composite may provide a solution for thrombosis of small vessel conduits commonly seen in decellularized scaffolds used in tissue engineering applications.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60201, United States; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Berke Akgun
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ryan C Lam
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60201, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60201, United States; Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Jason A Wertheim
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60201, United States; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60201, United States; Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
5
|
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges. Cardiovasc Eng Technol 2011. [PMID: 23181145 DOI: 10.1007/s13239-011-0049-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
Collapse
|