1
|
Choi Y, Hwang YC, Yu MK, Lee KW, Min KS. Effects of barium titanate on the dielectric constant, radiopacity, and biological properties of tricalcium silicate-based bioceramics. Dent Mater J 2023; 42:55-63. [PMID: 36244737 DOI: 10.4012/dmj.2022-069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study evaluated the effect of barium titanate (BT) on the dielectricity, radiopacity, and biological properties of tricalcium silicate (C3S). C3S/BT samples were prepared with varying proportions of BT (0, 20, 40, and 60 wt%; referred to as BT00, BT20, BT40, and BT60, respectively). Dielectric constant and radiopacity were measured. Cytocompatibility was evaluated on human dental pulp cells. After surgical procedures on rat mandible, immunohistochemistry and Masson's trichrome staining were performed. The dielectric constant increased with higher proportions of BT (p<0.05). BT40 and BT60 satisfied the clinical guideline of radiopacity. There were no significant differences among groups in the cytocompatibility tests (p>0.05). New bone was observed well, along with the expressions of the dentin matrix protein 1 (DMP1), osteocalcin (OC), and osteonectin (ON) in BT40 and BT60. Conclusively, the contents of 40-60 wt% of BT in C3S provided proper radiopacity, favorable cytocompatibility, and beneficial effect on bone regeneration.
Collapse
Affiliation(s)
- Yoorina Choi
- Department of Conservative Dentistry, College of Dentistry, Wonkwang University
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University
| | - Mi-Kyung Yu
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University.,Research Institute of Clinical Medicine of Jeonbuk National University.,Biomedical Research Institute of Jeonbuk National University Hospital
| | - Kwang-Won Lee
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University.,Research Institute of Clinical Medicine of Jeonbuk National University.,Biomedical Research Institute of Jeonbuk National University Hospital
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University.,Research Institute of Clinical Medicine of Jeonbuk National University.,Biomedical Research Institute of Jeonbuk National University Hospital
| |
Collapse
|
2
|
Choi Y, Bae JL, Kim HJ, Yu MK, Lee KW, Min KS. Effects of dodecacalcium hepta-aluminate content on the setting time, compressive strength, alkalinity, and cytocompatibility of tricalcium silicate cement. J Appl Oral Sci 2019; 27:e20180247. [PMID: 30624470 PMCID: PMC6322644 DOI: 10.1590/1678-7757-2018-0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Objective This study aimed to investigate the effects of dodecacalcium hepta-aluminate (C12A7) content on some physicochemical properties and cytocompatibility of tricalcium silicate (C3S) cement using human dental pulp cells (hDPCs). Material and Methods High purity C3S cement was manufactured by a solid phase method. C12A7 was mixed with the cement in proportions of 0, 5, 8, and 10 wt% (C12A7-0, −5, −8, and −10, respectively). Physicochemical properties including initial setting time, compressive strength, and alkalinity were evaluated. Cytocompatibility was assessed with cell viability tests and cell number counts. Statistical analysis was performed by using one-way analysis of variance (ANOVA) and Tukey's test (p<0.05). Results The initial setting time of C3S-based cement was shorter in the presence of C12A7 (p<0.05). After 1 day, C12A7-5 showed significantly higher compressive strength than the other groups (p<0.05). After 7 days, the compressive strength of C12A7-5 was similar to that of C12A7-0, whereas other groups showed strength lower than C12A7-0. The pH values of all tested groups showed no significant differences after 1 day (p>0.05). The C12A7-5 group showed similar cell viability to the C12A7-0 group (p>0.05), while the other experimental groups showed lower values compared to C12A7-0 group (p<0.05). The number of cells grown on the C12A7-5 specimen was higher than that on C12A7-8 and −10 (p<0.05). Conclusions The addition of C12A7 to C3S cement at a proportion of 5% resulted in rapid initial setting time and higher compressive strength with no adverse effects on cytocompatibility.
Collapse
Affiliation(s)
- Yoorina Choi
- Wonkwang University Dental Hospital, Department of Conservative Dentistry, Iksan, Korea.,Chonbuk National University, School of Dentistry and Institute of Oral Bioscience, Department of Conservative Dentistry, Jeonju, Korea
| | - Jong-Lye Bae
- Chonbuk National University, School of Dentistry and Institute of Oral Bioscience, Department of Conservative Dentistry, Jeonju, Korea
| | - Hee-Jin Kim
- Kosin University, College of Medicine, Department of Dentistry, Busan, Korea
| | - Mi-Kyung Yu
- Chonbuk National University, School of Dentistry and Institute of Oral Bioscience, Department of Conservative Dentistry, Jeonju, Korea.,Chonbuk National University, Research Institute of Clinical Medicine, Jeonju, Korea.,Chonbuk National University Hospital, Biomedical Research Institute, Jeonju, Korea
| | - Kwang-Won Lee
- Chonbuk National University, School of Dentistry and Institute of Oral Bioscience, Department of Conservative Dentistry, Jeonju, Korea.,Chonbuk National University, Research Institute of Clinical Medicine, Jeonju, Korea.,Chonbuk National University Hospital, Biomedical Research Institute, Jeonju, Korea
| | - Kyung-San Min
- Chonbuk National University, School of Dentistry and Institute of Oral Bioscience, Department of Conservative Dentistry, Jeonju, Korea.,Chonbuk National University, Research Institute of Clinical Medicine, Jeonju, Korea.,Chonbuk National University Hospital, Biomedical Research Institute, Jeonju, Korea
| |
Collapse
|
3
|
WU T, XU C, DU R, WEN Y, CHANG J, HUAN Z, ZHU Y. Effects of silicate-based composite material on the proliferation and mineralization behaviors of human dental pulp cells: An in vitro assessment. Dent Mater J 2018; 37:889-896. [DOI: 10.4012/dmj.2017-328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tiantian WU
- Department of General Dentistry, Ninth hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology
| | - Chen XU
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
| | - Rong DU
- Department of General Dentistry, Ninth hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology
| | - Yang WEN
- Department of General Dentistry, Ninth hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology
| | - Jiang CHANG
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
| | - Zhiguang HUAN
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
| | - Yaqin ZHU
- Department of General Dentistry, Ninth hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology
| |
Collapse
|
4
|
Sun M, Liu A, Ma C, Shao H, Yu M, Liu Y, Yan S, Gou Z. Systematic investigation of β-dicalcium silicate-based bone cements in vitro and in vivo in comparison with clinically applied calcium phosphate cement and Bio-Oss®. RSC Adv 2016. [DOI: 10.1039/c5ra21340a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Herein we systematically investigated the biological performance of a β-dicalcium silicate (β-C2S)-based bone cement in comparison with the clinically used calcium phosphate cement (CPC) and Bio-Oss®.
Collapse
Affiliation(s)
- Miao Sun
- Department of Oral and Maxillofacial Surgery
- Second Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310009
| | - An Liu
- Department of Orthopaedic Surgery
- Second Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Chiyuan Ma
- Department of Orthopaedic Surgery
- Second Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Huifeng Shao
- The State Key Lab of Fluid Power Transmission and Control Systems
- College of Mechanical Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Menghua Yu
- Department of Oral and Maxillofacial Surgery
- Second Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310009
| | - Yanming Liu
- Department of Oral and Maxillofacial Surgery
- Second Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310009
| | - Shigui Yan
- Department of Orthopaedic Surgery
- Second Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Zhongru Gou
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310029
- China
| |
Collapse
|
5
|
Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta Biomater 2015; 21:217-27. [PMID: 25890099 DOI: 10.1016/j.actbio.2015.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 11/21/2022]
Abstract
Although inorganic bone cements such as calcium phosphate cements have been widely applied in orthopaedic and dental fields because of their self-setting ability, development of high-strength bone cement with bioactivity and biodegradability remains a major challenge. Therefore, the purpose of this study is to prepare a tricalcium silicate/magnesium phosphate (C3S/MPC) composite bone cement, which is intended to combine the excellent bioactivity of C3S with remarkable self-setting properties and mechanical strength of MPC. The self-setting and mechanical properties, in vitro induction of apatite formation and degradation behaviour, and cytocompatibility of the composite cements were investigated. Our results showed that the C3S/MPC composite cement with an optimal composition had compressive strength up to 87 MPa, which was significantly higher than C3S (25 MPa) and MPC (64 MPa). The setting time could be adjusted between 3 min and 29 min with the variation of compositions. The hydraulic reaction products of the C3S/MPC composite cement were composed of calcium silicate hydrate (CSH) derived from the hydration of C3S and gel-like amorphous substance. The C3S/MPC composite cements could induce apatite mineralization on its surface in SBF solution and degraded gradually in Tris-HCl solution. Besides, the composite cements showed good cytocompatibility and stimulatory effect on the proliferation of MC3T3-E1 osteoblast cells. Our results indicated that the C3S/MPC composite bone cement might be a new promising high-strength inorganic bioactive material which may hold the potential for bone repair in load-bearing site.
Collapse
|
6
|
No YJ, Roohani-Esfahani SI, Zreiqat H. Nanomaterials: the next step in injectable bone cements. Nanomedicine (Lond) 2015; 9:1745-64. [PMID: 25321173 DOI: 10.2217/nnm.14.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Injectable bone cements (IBCs) are biocompatible materials that can be used as bone defect fillers in maxillofacial surgeries and in orthopedic fracture treatment in order to augment weakened bone due to osteoporosis. Current clinically available IBCs, such as polymethylmethacrylate and calcium phosphate cement, have certain advantages; however, they possess several drawbacks that prevent them from gaining universal acceptance. New gel-based injectable materials have also been developed, but these are too mechanically weak for load-bearing applications. Recent research has focused on improving various injectable materials using nanomaterials in order to render them suitable for bone tissue regeneration. This article outlines the requirements of IBCs, the advantages and limitations of currently available IBCs and the state-of-the-art developments that have demonstrated the effects of nanomaterials within injectable systems.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials & Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney 2006, Australia
| | | | | |
Collapse
|
7
|
Correa D, Almirall A, Carrodeguas RG, dos Santos LA, De Aza AH, Parra J, Morejón L, Delgado JA. α-Tricalcium phosphate cements modified withβ-dicalcium silicate and tricalcium aluminate: Physicochemical characterization,in vitrobioactivity and cytotoxicity. J Biomed Mater Res B Appl Biomater 2014; 103:72-83. [DOI: 10.1002/jbm.b.33176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/18/2014] [Accepted: 03/30/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Daniel Correa
- Departamento de Cerámicas y Composites; Centro de Biomateriales, Universidad de La Habana; 10400 La Habana Cuba
| | - Amisel Almirall
- Departamento de Cerámicas y Composites; Centro de Biomateriales, Universidad de La Habana; 10400 La Habana Cuba
| | | | - Luis Alberto dos Santos
- Labiomat-Departamento de Materiales; Escuela de Ingenierías, Universidad Federal de Río Grande del Sur; 91509-900 Porto Alegre Rio Grande do Sul Brazil
| | - Antonio H. De Aza
- Departamento de Cerámica; Instituto de Cerámica y Vidrio; CSIC Madrid Spain
| | - Juan Parra
- Unidad de Investigación Clínica y Biopatología Experimental; Hospital Provincial de Ávila, Centro de Investigación en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Ávila Spain
| | - Lizette Morejón
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana; 10400 La Habana Cuba
| | - José Angel Delgado
- Departamento de Cerámicas y Composites; Centro de Biomateriales, Universidad de La Habana; 10400 La Habana Cuba
| |
Collapse
|
8
|
An evaluation of the inflammatory response of lipopolysaccharide-treated primary dental pulp cells with regard to calcium silicate-based cements. Int J Oral Sci 2014; 6:94-8. [PMID: 24556955 PMCID: PMC5130057 DOI: 10.1038/ijos.2014.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 01/23/2023] Open
Abstract
This study compared the biological changes of lipopolysaccharide (LPS)-treated dental pulp (DP) cells directly cultured on mineral trioxide aggregate (MTA) and calcium silicate (CS) cements. DP cells were treated with LPS for 24 h. Then, the LPS-treated DP cells were cultured on MTA or CS cements. Cell viability, cell death mechanism and interleukin (IL)-1β expressions were analysed. A one-way analysis of variance was used to evaluate the significance of the differences between the means. A significantly higher IL-1β expression (2.9-fold) was found for LPS-treated cells (P<0.05) compared with DP cells without LPS treatment at 24 h. Absorbance values of LPS-treated cells cultured on CS cement were higher than a tissue culture plate. A significant difference (P<0.05) in cell viability was observed between cells on CS and MTA cements 24 h after seeding. At 48 h, a high concentration of Si (5 mM) was released from MTA, which induced LPS-treated DP cell apoptosis. The present study demonstrates that CS cement is biocompatible with cultured LPS-treated DP cells. MTA stimulates inflammation in LPS-treated DP cells, which leads to greater IL-1β expression and apoptosis.
Collapse
|
9
|
Mishra RK, Fernández-Carrasco L, Flatt RJ, Heinz H. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution. Dalton Trans 2014; 43:10602-16. [DOI: 10.1039/c4dt00438h] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A force field for tricalcium aluminate is presented, validated, and applied to generate insight into surface forces, the hydration reaction, and molecular adsorption that remains elusive from experiment.
Collapse
Affiliation(s)
- Ratan K. Mishra
- Department of Civil
- Environmental and Geomatic Engineering
- ETH Zurich
- CH-8093 Zürich, Switzerland
| | - Lucia Fernández-Carrasco
- Department of Architectural Technology I
- Universitat Politècnica de Catalunya
- 08028 Barcelona, Spain
| | - Robert J. Flatt
- Department of Civil
- Environmental and Geomatic Engineering
- ETH Zurich
- CH-8093 Zürich, Switzerland
| | - Hendrik Heinz
- Department of Polymer Engineering
- University of Akron
- Akron, USA
| |
Collapse
|
10
|
Correa D, Almirall A, García-Carrodeguas R, dos Santos LA, De Aza AH, Parra J, Delgado JÁ. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies. J Biomed Mater Res A 2013; 102:3693-703. [PMID: 24277585 DOI: 10.1002/jbm.a.35041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/28/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control.
Collapse
Affiliation(s)
- Daniel Correa
- Departamento de Cerámicas y Composites, Centro de Biomateriales, Universidad de La Habana, 10400, La Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|