1
|
Burger MG, Grosso A, Briquez PS, Born GME, Lunger A, Schrenk F, Todorov A, Sacchi V, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater 2022; 149:111-125. [PMID: 35835287 DOI: 10.1016/j.actbio.2022.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022]
Abstract
Rapid vascularization of clinical-size bone grafts is an unsolved challenge in regenerative medicine. Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis. Its over-expression by genetically modified human osteoprogenitors has been previously evaluated to drive vascularization in osteogenic grafts, but has been observed to cause paradoxical bone loss through excessive osteoclast recruitment. However, during bone development angiogenesis and osteogenesis are physiologically coupled by VEGF expression. Here we investigated whether the mode of VEGF delivery may be a key to recapitulate its physiological function. VEGF activity requires binding to the extracellular matrix, and heterogeneous levels of expression lead to localized microenvironments of excessive dose. Therefore we hypothesized that a homogeneous distribution of matrix-associated factor in the microenvironment may enable efficient coupling of angiogenesis and bone formation. This was achieved by decorating fibrin matrices with a cross-linkable engineered version of VEGF (TG-VEGF) that is released only by enzymatic cleavage by invading cells. In ectopic grafts, both TG-VEGF and VEGF-expressing progenitors similarly improved vascularization within the first week, but efficient bone formation was possible only in the factor-decorated matrices, whereas heterogenous, cell-based VEGF expression caused significant bone loss. In critical-size orthotopic calvaria defects, TG-VEGF effectively improved early vascular invasion, osteoprogenitor survival and differentiation, as well as bone repair compared to both controls and VEGF-expressing progenitors. In conclusion, homogenous distribution of matrix-associated VEGF protein preserves the physiological coupling of angiogenesis and osteogenesis, providing an attractive and clinically applicable strategy to engineer vascularized bone. STATEMENT OF SIGNIFICANCE: The therapeutic regeneration of vascularized bone is an unsolved challenge in regenerative medicine. Stimulation of blood vessel growth by over-expression of VEGF has been associated with paradoxical bone loss, whereas angiogenesis and osteogenesis are physiologically coupled by VEGF during development. Here we found that controlling the distribution of VEGF dose in an osteogenic graft is key to recapitulate its physiological function. In fact, homogeneous decoration of fibrin matrices with engineered VEGF could improve both vascularization and bone formation in orthotopic critical-size defects, dispensing with the need for combined osteogenic factor delivery. VEGF-decorated fibrin matrices provide a readily translatable platform for engineering a controlled microenvironment for bone regeneration.
Collapse
Affiliation(s)
- Maximilian G Burger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Gordian M E Born
- Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Flavio Schrenk
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Atanas Todorov
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland; Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Veronica Sacchi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Dirk J Schaefer
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
2
|
Venkatesan J, Murugan SS, Ad P, Dgv Y, Seong GH. Alginate-based Composites Microspheres: Preparations and Applications for Bone Tissue Engineering. Curr Pharm Des 2022; 28:1067-1081. [PMID: 35593346 DOI: 10.2174/1381612828666220518142911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based biomaterials have been extensively studied for bone tissue engineering. Scaffolds, microspheres, and hydrogels can be developed using alginate, which is biocompatible, biodegradable, and able to deliver growth factors and drugs. Alginate microspheres can be produced using crosslinking, microfluidic, three-dimensional printing, extrusion, and emulsion methods. The sizes of the alginate microspheres range from 10 µm to 4 mm. This review describes the chemical characterization and mechanical assessment of alginate-based microspheres. Combinations of alginate with hydroxyapatite, chitosan, collagen, polylactic acid, polycaprolactone, and bioglass were discussed for bone tissue repair and regeneration. In addition, alginate combinations with bone morphogenetic proteins, vascular endothelial growth factor, transforming growth factor beta-3, other growth factors, cells, proteins, drugs, and osteoinductive drugs were analyzed for tissue engineering applications. Furthermore, the biocompatibility of developed alginate microspheres was discussed for different cell lines. Finally, alginate microsphere-based composites with stem cell interaction for bone tissue regeneration were presented. In the present review, we have assessed the preclinical research on in vivo models of alginate-based microspheres for bone tissue repair and regeneration. Overall, alginate-based microspheres are potential candidates for graft substitutes and the treatment of various bone-related diseases.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea.,Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Pandurang Ad
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Yashaswini Dgv
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
3
|
Liu Y, Xie D, Zhou R, Zhang Y. 3D X-ray micro-computed tomography imaging for the microarchitecture evaluation of porous metallic implants and scaffolds. Micron 2020; 142:102994. [PMID: 33341436 DOI: 10.1016/j.micron.2020.102994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
As an advanced microscopy technology with strong sample adaptability and non-destructive three-dimensional (3D) characteristics, X-ray micro-computed tomography (Micro-CT) can establish the overall connection between various microarchitecture parameters and accelerate the research process of porous metallic implants and scaffolds. In this review, the Micro-CT based quantitative evaluation methods of microarchitecture and bone formation are investigated. To ensure reliability of the results, the Micro-CT setup is discussed briefly and the essential image processing algorithms are introduced in detail. The significance and limitations of Micro-CT are analyzed in the context of research on porous metallic implants. We also discuss the future development of Micro-CT technology in the field of biological tissue engineering.
Collapse
Affiliation(s)
- Yuchuan Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China; Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongyang Xie
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China; Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Rifeng Zhou
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China; Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China.
| | - Yuxin Zhang
- State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China; College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Dau M, Ganz C, Zaage F, Staedt H, Goetze E, Gerber T, Kämmerer PW. In vivo comparison of a granular and putty form of a sintered and a non-sintered silica-enhanced hydroxyapatite bone substitute material. J Biomater Appl 2019; 34:864-874. [DOI: 10.1177/0885328219877584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Germany
| | - Carnelia Ganz
- Department of Physics, Faculty of Mathematics and Natural Sciences, Rostock University, Germany
| | - Franziska Zaage
- Department of Physics, Faculty of Mathematics and Natural Sciences, Rostock University, Germany
| | - Henning Staedt
- Private Practice and Department of Prosthodontics and Materials Science, University Medical Center Rostock, Germany
| | - Elisabeth Goetze
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Germany
| | - Thomas Gerber
- Department of Physics, Faculty of Mathematics and Natural Sciences, Rostock University, Germany
| | - Peer Wolfgang Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Germany
| |
Collapse
|
5
|
Turco G, Porrelli D, Marsich E, Vecchies F, Lombardi T, Stacchi C, Di Lenarda R. Three-Dimensional Bone Substitutes for Oral and Maxillofacial Surgery: Biological and Structural Characterization. J Funct Biomater 2018; 9:jfb9040062. [PMID: 30413004 PMCID: PMC6306815 DOI: 10.3390/jfb9040062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Bone substitutes, either from human (autografts and allografts) or animal (xenografts) sources, suffer from inherent drawbacks including limited availability or potential infectivity to name a few. In the last decade, synthetic biomaterials have emerged as a valid alternative for biomedical applications in the field of orthopedic and maxillofacial surgery. In particular, phosphate-based bone substitution materials have exhibited a high biocompatibility due to their chemical similitude with natural hydroxyapatite. Besides the nature of the biomaterial, its porous and interconnected architecture is essential for a correct osseointegration. This performance could be predicted with an extensive characterization of the biomaterial in vitro. Methods: In this study, we compared the biological, chemical, and structural features of four different commercially available bone substitutes derived from an animal or a synthetic source. To this end, µ-CT and SEM were used to describe the biomaterials structure. Both FTIR and EDS analyses were carried out to provide a chemical characterization. The results obtained by these techniques were correlated with cell adhesion and proliferation of the osteosarcoma MG-63 human cell line cultured in vitro. Results: The findings reported in this paper indicate a significant influence of both the nature and the structure of the biomaterials in cell adhesion and proliferation, which ultimately could affect the clinical performance of the biomaterials. Conclusions: The four commercially available bone substitutes investigated in this work significantly differed in terms of structural features, which ultimately influenced in vitro cell proliferation and may so affect the clinical performance of the biomaterials.
Collapse
Affiliation(s)
- Gianluca Turco
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Davide Porrelli
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Federica Vecchies
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Teresa Lombardi
- Private Practice, Studio Odontoiatrico Hesire, I-87011 Cassano allo Ionio, Italy.
| | - Claudio Stacchi
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Roberto Di Lenarda
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| |
Collapse
|
6
|
Maglione M, Spano S, Ruaro ME, Salvador E, Zanconati F, Tromba G, Turco G. In vivo evaluation of chitosan-glycerol gel scaffolds seeded with stem cells for full-thickness mandibular bone regeneration. J Oral Sci 2018. [PMID: 28637982 DOI: 10.2334/josnusd.16-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to evaluate in vivo bone regeneration, mediated by adipose-derived stem cells (ADSCs), induced to differentiate into osteoblasts and carried by a scaffold gel. In the test group, bone regeneration was mediated by ADSCs, induced to differentiate into osteoblasts, and carried by a scaffold gel. In the control group a scaffold without cells was used. The scaffold, consisting of chitosan and glycerol phosphate, was maintained in situ by a cross-linked resorbable membrane. The osteogenic potential of ADSCs was confirmed by osteocalcin assay and Von Kossa staining performed before implantation. Histological assays detected an initial increase in bone formation in the test group compared with the control group. Microcomputed tomography analysis did not show significant differences between the two groups. Both histological and microcomputed tomography analysis were performed on the ex vivo specimens after a follow-up period of 8 weeks. We observed that differentiated ADSCs could increase bone regeneration and that the scaffold used here can be a suitable carrier to entrap and maintain the cells in situ. On the contrary, the membrane used was not functional in isolating the site of the defect from surrounding soft tissues and caused a significant inflammatory reaction.
Collapse
Affiliation(s)
| | - Serena Spano
- Department of Medical Sciences, University of Trieste
| | | | | | | | | | | |
Collapse
|
7
|
Fiorentino SM, Carfì Pavia F, La Carrubba V, Brucato V, Abrami M, Farra R, Turco G, Grassi G, Grassi M. Characterization of PLLA scaffolds for biomedical applications. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1252344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Francesco Carfì Pavia
- Department of Civil, Environmental, Aerospatiale and Materials Engineering, University of Palermo, Palermo, Italy
| | - Vincenzo La Carrubba
- Department of Civil, Environmental, Aerospatiale and Materials Engineering, University of Palermo, Palermo, Italy
| | - Valerio Brucato
- Department of Civil, Environmental, Aerospatiale and Materials Engineering, University of Palermo, Palermo, Italy
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Trieste, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Gianluca Turco
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| |
Collapse
|