1
|
Buwalda SJ. 'Click' hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int J Biol Macromol 2024; 282:136695. [PMID: 39447791 DOI: 10.1016/j.ijbiomac.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Click chemistry refers to a class of highly selective reactions that occur in one pot, are not disturbed by water or oxygen, proceed quickly to high yield and generate only inoffensive byproducts. Since its first definition by Barry Sharpless in 2001, click chemistry has increasingly been used for the preparation of hydrogels, which are water-swollen polymer networks with numerous biomedical applications. Polysaccharides, which can be obtained from renewable resources including plants, have drawn growing attention for use in hydrogels due to the recent focus on the development of a sustainable society and the reduction of the environmental impact of the chemical industry. Importantly, plant-based polysaccharides are often bioresorbable and exhibit excellent biocompatibility and biomimicry. This comprehensive review describes the synthesis, characterization and biomedical applications of hydrogels which combine the renewable and biocompatible aspects of polysaccharides with the chemically and biomedically favorable characteristics of click crosslinking. The manuscript focuses on click hydrogels prepared from alginate and cellulose, the most widely used polysaccharides for this type of hydrogel, but also click hydrogels based on other plant-derived polymers (e.g. pectin) are discussed. In addition, the challenges are described that should be overcome to facilitate translation from academia to the clinic.
Collapse
Affiliation(s)
- Sytze J Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
2
|
Jang S, Lee JB, Yoo C, Kim HS, Choi K, Lee J, Lee DY. Biocompatible and nondegradable microcapsules using an ethylamine-bridged EGCG dimer for successful therapeutic cell transplantation. J Control Release 2024; 373:520-532. [PMID: 39059498 DOI: 10.1016/j.jconrel.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Conventional alginate microcapsules are widely used for encapsulating therapeutic cells to reduce the host immune response. However, the exchange of monovalent cations with divalent cations for crosslinking can lead to a sol-gel phase transition, resulting in gradual degradation and swelling of the microcapsules in the body. To address this limitation, we present a biocompatible and nondegradable epigallocatechin-3-gallate (EGCG)-based microencapsulation with ethylamine-bridged EGCG dimers (EGCG(d)), denoted as 'Epi-Capsules'. These Epi-Capsules showed increased physical properties and Ca2+ chelating resistance compared to conventional alginate microcapsules. Horseradish peroxidase (HRP) treatment is very effective in increasing the stability of Epi-Capsule((+)HRP) due to the crosslinking between EGCG(d) molecules. Interestingly, the Epi-Capsules(oxi) using a pre-oxidized EGCG(d) can support long-term survival (>90 days) of xenotransplanted insulin-secreting islets in diabetic mice in vivo, which is attributed to its structural stability and reactive oxygen species (ROS) scavenging for lower fibrotic activity. Collectively, this EGCG-based microencapsulation can create Ca2+ chelating-resistance and anti-oxidant activity, which could be a promising strategy for cell therapies for diabetes and other diseases.
Collapse
Affiliation(s)
- Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Bin Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Kimyung Choi
- Optipharm Co., Ltd., Cheongju 28158, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Wang J, Liu S, Huang J, Ren K, Zhu Y, Yang S. Alginate: Microbial production, functionalization, and biomedical applications. Int J Biol Macromol 2023; 242:125048. [PMID: 37236570 DOI: 10.1016/j.ijbiomac.2023.125048] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Alginates are natural polysaccharides widely participating in food, pharmaceutical, and environmental applications due to their excellent gelling capacity. Their excellent biocompatibility and biodegradability further extend their application to biomedical fields. The low consistency in molecular weight and composition of algae-based alginates may limit their performance in advanced biomedical applications. It makes microbial alginate production more attractive due to its potential for customizing alginate molecules with stable characteristics. Production costs remain the primary factor limiting the commercialization of microbial alginates. However, carbon-rich wastes from sugar, dairy, and biodiesel industries may serve as potential substitutes for pure sugars for microbial alginate production to reduce substrate costs. Fermentation parameter control and genetic engineering strategies may further improve the production efficiency and customize the molecular composition of microbial alginates. To meet the specific needs of biomedical applications, alginates may need functionalization, such as functional group modifications and crosslinking treatments, to achieve enhanced mechanical properties and biochemical activities. The development of alginate-based composites incorporated with other polysaccharides, gelatin, and bioactive factors can integrate the advantages of each component to meet multiple requirements in wound healing, drug delivery, and tissue engineering applications. This review provided a comprehensive insight into the sustainable production of high-value microbial alginates. It also discussed recent advances in alginate modification strategies and alginate-based composites for representative biomedical applications.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Siying Yang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| |
Collapse
|
5
|
De Angelis G, Lutz-Bueno V, Amstad E. Rheological Properties of Ionically Crosslinked Viscoelastic 2D Films vs. Corresponding 3D Bulk Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23758-23764. [PMID: 37142546 DOI: 10.1021/acsami.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ionically crosslinked hydrogels containing metal coordination motifs have piqued the interest of researchers in recent decades due to their self-healing and adhesive properties. In particular, catechol-functionalized bulk hydrogels have received a lot of attention because of their bioinspired nature. By contrast, very little is known about thin viscoelastic membranes made using similar chelator-ion pair motifs. This shortcoming is surprising because the unique interfacial properties of these membranes, namely, their self-healing and adhesion, would be ideal for capsule shells, adhesives, or for drug delivery purposes. We recently demonstrated the feasibility to fabricate 10 nm thick viscoelastic membranes from catechol-functionalized surfactants that are ionically crosslinked at the liquid/liquid interface. However, it is unclear if the vast know-how existing on the influence of the chelator-ion pair on the mechanical properties of ionically crosslinked three-dimensional (3D) hydrogels can be translated to two-dimensional (2D) systems. To address this question, we compare the dynamic mechanical properties of ionically crosslinked pyrogallol functionalized hydrogels with those of viscoelastic membranes that are crosslinked using the same chelator-ion pairs. We demonstrate that the storage and loss moduli of viscoelastic membranes follow a trend similar to that of the hydrogels, with the membrane becoming stronger as the ion-chelator affinity increases. Yet, membranes relax significantly faster than bulk equivalents. These insights enable the targeted design of viscoelastic, adhesive, self-healing membranes possessing tunable mechanical properties. Such capsules can potentially be used, for example, in cosmetics, as granular inks, or with additional work that includes replacing the fluorinated block by a hydrocarbon-based one in drug delivery and food applications.
Collapse
Affiliation(s)
- Gaia De Angelis
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Viviane Lutz-Bueno
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
The effect of alkali metals, carbocations, and metallocenes substitutes on two ν-carrabiose disaccharide derivatives: a density functional study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Sacramento MMA, Borges J, Correia FJS, Calado R, Rodrigues JMM, Patrício SG, Mano JF. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front Bioeng Biotechnol 2022; 10:1041102. [PMID: 36568299 PMCID: PMC9773402 DOI: 10.3389/fbioe.2022.1041102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, natural-origin polysaccharides have received increasing attention across different fields of application, including biomedicine and biotechnology, because of their specific physicochemical and biological properties that have afforded the fabrication of a plethora of multifunctional devices for healthcare applications. More recently, marine raw materials from fisheries and aquaculture have emerged as a highly sustainable approach to convert marine biomass into added-value polysaccharides for human benefit. Nowadays, significant efforts have been made to combine such circular bio-based approach with cost-effective and environmentally-friendly technologies that enable the isolation of marine-origin polysaccharides up to the final construction of a biomedical device, thus developing an entirely sustainable pipeline. In this regard, the present review intends to provide an up-to-date outlook on the current green extraction methodologies of marine-origin polysaccharides and their molecular engineering toolbox for designing a multitude of biomaterial platforms for healthcare. Furthermore, we discuss how to foster circular bio-based approaches to pursue the further development of added-value biomedical devices, while preserving the marine ecosystem.
Collapse
Affiliation(s)
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fernando J. S. Correia
- Laboratory of Scientific Illustration, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ricardo Calado
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - João M. M. Rodrigues
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia G. Patrício
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Zanon M, Montalvillo-Jiménez L, Bosch P, Cue-López R, Martínez-Campos E, Sangermano M, Chiappone A. Photocurable Thiol-yne Alginate Hydrogels for Regenerative Medicine Purposes. Polymers (Basel) 2022; 14:4709. [PMID: 36365703 PMCID: PMC9654832 DOI: 10.3390/polym14214709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 04/03/2024] Open
Abstract
Every year millions of people worldwide undergo surgical interventions, with the occurrence of mild or severe post-treatment consequences meaning that rehabilitation plays a key role in modern medicine. Considering the cases of burns and plastic surgery, the pressing need for new materials that can be used for wound patches or body fillers and are able to sustain tissue regeneration and promote cell adhesion and proliferation is clear. The challenges facing next-generation implant materials also include the need for improved structural properties for cellular organization and morphogenic guidance together with optimal mechanical, rheological, and topographical behavior. Herein, we propose for the first time a sodium alginate hydrogel obtained by a thiol-yne reaction, easily synthesized using carbodiimide chemistry in a two-step reaction. The hydrogels were formed in all cases within a few minutes of light irradiation, showing good self-standing properties under solicitation. The mechanical, rheological, topographical, and swelling properties of the gels were also tested and reported. Lastly, no cytotoxicity was detected among the hydrogels. Soluble extracts in culture media allowed cell proliferation, and no differences between samples were detected in terms of metabolic activity and DNA content. These results suggest the potential use of these cytocompatible hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Michael Zanon
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Montalvillo-Jiménez
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Bosch
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Raquel Cue-López
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al Instituto de Ciencia y Tecnología de Polímeros, Instituto de Química Médica (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al Instituto de Ciencia y Tecnología de Polímeros, Instituto de Química Médica (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Ahn SH, Rath M, Tsao CY, Bentley WE, Raghavan SR. Single-Step Synthesis of Alginate Microgels Enveloped with a Covalent Polymeric Shell: A Simple Way to Protect Encapsulated Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18432-18442. [PMID: 33871957 DOI: 10.1021/acsami.0c20613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microgels of biopolymers such as alginate are widely used to encapsulate cells and other biological payloads. Alginate is an attractive material for cell encapsulation because it is nontoxic and convenient: spherical alginate gels are easily created by contacting aqueous droplets of sodium alginate with divalent cations such as Ca2+. Alginate chains in the gel become cross-linked by Ca2+ cations into a 3-D network. When alginate gels are placed in a buffer, however, the Ca2+ cross-links are eliminated by exchange with Na+, thereby weakening and degrading the gels. With time, encapsulated cells are released into the external solution. Here, we describe a simple solution to the above problem, which involves forming alginate gels enveloped by a thin shell of a covalently cross-linked gel. The shell is formed via free-radical polymerization using conventional monomers such as acrylamide (AAm) or acrylate derivatives, including polyethylene glycol diacrylate (PEGDA). The entire process is performed in a single step at room temperature (or 37 °C) under mild, aqueous conditions. It involves combining the alginate solution with a radical initiator, which is then introduced as droplets into a reservoir containing Ca2+ and monomers. Within minutes of either simple incubation or exposure to ultraviolet (UV) light, the droplets are converted into alginate-polymer microcapsules with a core of alginate and a shell of the polymer (AAm or PEGDA). The microcapsules are mechanically more robust than conventional alginate/Ca2+ microgels, and while the latter swell and degrade when placed in buffers or in chelators like sodium citrate, the former remain stable under all conditions. We encapsulate both bacteria and mammalian cells in these microcapsules and find that the cells remain viable and functional over time. Lastly, a variation of the synthesis technique is shown to generate multilayered microcapsules with a liquid core surrounded by concentric layers of alginate and AAm gels. We anticipate that the approaches presented here will find application in a variety of areas including cell therapies, artificial cells, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- So Hyun Ahn
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Medha Rath
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - William E Bentley
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Somo SI, Brown JM, Brey EM. Dual Crosslinking of Alginate Outer Layer Increases Stability of Encapsulation System. Front Chem 2020; 8:575278. [PMID: 33282827 PMCID: PMC7688585 DOI: 10.3389/fchem.2020.575278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
The current standard treatment for Type 1 diabetes is the administration of exogenous insulin to manage blood glucose levels. Cellular therapies are in development to address this dependency and allow patients to produce their own insulin. Studies have shown that viable, functional allogenic islets can be encapsulated inside alginate-based materials as a potential treatment for Type 1 diabetes. The capability of these grafts is limited by several factors, among which is the stability and longevity of the encapsulating material in vivo. Previous studies have shown that multilayer Alginate-Poly-L-Ornithine-Alginate (A-PLO-A) microbeads are effective in maintaining cellular function in vivo. This study expands upon the existing encapsulation material by investigating whether covalent crosslinking of the outer alginate layer increases stability. The alginate comprising the outer layer was methacrylated, allowing it to be covalently crosslinked. Microbeads with a crosslinked outer layer exhibited a consistent outer layer thickness and increased stability when exposed to chelating agents in vitro. The outer layer was maintained in vivo even in the presence of a robust inflammatory response. The results demonstrate a technique for generating A-PLO-A with a covalently crosslinked outer layer.
Collapse
Affiliation(s)
- Sami I. Somo
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, United States
| | - Jacob M. Brown
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Eric M. Brey
| |
Collapse
|
13
|
Bahsis L, Ablouh EH, Anane H, Taourirte M, Julve M, Stiriba SE. Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide-alkyne cycloaddition type reactions in water. RSC Adv 2020; 10:32821-32832. [PMID: 35516499 PMCID: PMC9056610 DOI: 10.1039/d0ra06410f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algae Laminaria digitata residue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 μm. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC) via click chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyne via the oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85-92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (ω k) at the electrophilic reagent and the local nucleophilicity (N k) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.
Collapse
Affiliation(s)
- Lahoucine Bahsis
- Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali B.P.: 20 24000 El Jadida Morocco
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
| | - El-Houssaine Ablouh
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad 40000 Marrakech Morocco
- Centre d'Analyse et de Caractérisation, Université Cadi Ayyad 40000 Marrakech Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
| | - Moha Taourirte
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad 40000 Marrakech Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia C/Catedrático José Beltrán 46980 Paterna Valencia Spain
| | - Salah-Eddine Stiriba
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia C/Catedrático José Beltrán 46980 Paterna Valencia Spain
| |
Collapse
|
14
|
Szabó L, Noverraz F, Gerber‐Lemaire S. Multicomponent Alginate‐Derived Hydrogel Microspheres Presenting Hybrid Ionic‐Covalent Network and Drug Eluting Properties. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Luca Szabó
- Institute of Chemical Sciences and Engineering, Group for Functionalized Biomaterials Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG Station 6 CH-1015 Lausanne Switzerland
| | - François Noverraz
- Institute of Chemical Sciences and Engineering, Group for Functionalized Biomaterials Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG Station 6 CH-1015 Lausanne Switzerland
| | - Sandrine Gerber‐Lemaire
- Institute of Chemical Sciences and Engineering, Group for Functionalized Biomaterials Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG Station 6 CH-1015 Lausanne Switzerland
| |
Collapse
|
15
|
Szabó L, Gerber-Lemaire S, Wandrey C. Strategies to Functionalize the Anionic Biopolymer Na-Alginate without Restricting Its Polyelectrolyte Properties. Polymers (Basel) 2020; 12:E919. [PMID: 32326625 PMCID: PMC7240516 DOI: 10.3390/polym12040919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
The natural anionic polyelectrolyte alginate and its derivatives are of particular interest for pharmaceutical and biomedical applications. Most interesting for such applications are alginate hydrogels, which can be processed into various shapes, self-standing or at surfaces. Increasing efforts are underway to functionalize the alginate macromolecules prior to hydrogel formation in order to overcome the shortcomings of purely ionically cross-linked alginate hydrogels that are hindering the progress of several sophisticated biomedical applications. Particularly promising are derivatives of alginate, which allow simultaneous ionic and covalent cross-linking to improve the physical properties and add biological activity to the hydrogel. This review will report recent progress in alginate modification and functionalization with special focus on synthesis procedures, which completely conserve the ionic functionality of the carboxyl groups along the backbone. Recent advances in analytical techniques and instrumentation supported the goal-directed modification and functionalization.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland; (L.S.); (C.W.)
| | | |
Collapse
|
16
|
Sulaiman DA, Chang JYH, Bennett NR, Topouzi H, Higgins CA, Irvine DJ, Ladame S. Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid. ACS NANO 2019; 13:9620-9628. [PMID: 31411871 PMCID: PMC6746174 DOI: 10.1021/acsnano.9b04783] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Minimally invasive technologies that can sample and detect cell-free nucleic acid biomarkers from liquid biopsies have recently emerged as clinically useful for early diagnosis of a broad range of pathologies, including cancer. Although blood has so far been the most commonly interrogated bodily fluid, skin interstitial fluid has been mostly overlooked despite containing the same broad variety of molecular biomarkers originating from cells and surrounding blood capillaries. Emerging technologies to sample this fluid in a pain-free and minimally-invasive manner often take the form of microneedle patches. Herein, we developed microneedles that are coated with an alginate-peptide nucleic acid hybrid material for sequence-specific sampling, isolation, and detection of nucleic acid biomarkers from skin interstitial fluid. Characterized by fast sampling kinetics and large sampling capacity (∼6.5 μL in 2 min), this platform technology also enables the detection of specific nucleic acid biomarkers either on the patch itself or in solution after light-triggered release from the hydrogel. Considering the emergence of cell-free nucleic acids in bodily fluids as clinically informative biomarkers, platform technologies that can detect them in an automated and minimally invasive fashion have great potential for personalized diagnosis and longitudinal monitoring of patient-specific disease progression.
Collapse
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Jason Y. H. Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Nitasha R. Bennett
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Helena Topouzi
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Claire A. Higgins
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Ragon Institute of MIT, MGH, and Harvard, Boston MA 02139
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd., Chevy Chase, MD
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
17
|
García-Astrain C, Avérous L. Synthesis and behavior of click cross-linked alginate hydrogels: Effect of cross-linker length and functionality. Int J Biol Macromol 2019; 137:612-619. [PMID: 31276726 DOI: 10.1016/j.ijbiomac.2019.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
Various bismaleimides and trismaleimides of varying molar masses, chemical architectures and functionalities were explored as cross-linkers for furan-modified alginate chains via Diels-Alder click reactions. An environmentally friendly approach is described for the preparation of hydrogels based on naturally occurring biomacromolecules, without catalysts. The behavior of the resulting polysaccharides-based hydrogels was analyzed in terms of swelling, rheological properties and drug-release efficiency, in connection with potential biomedical applications. The use of the different cross-linkers allows tuning the mechanical properties as well as the pulsatile swelling behavior of the hydrogels. When using trifunctional cross-linkers stiffer hydrogels were formed with high storage modulus whereas the chain length and the composition of the cross-linker clearly influence the swelling of the hydrogel network. In connection with drug delivery applications, release of vanillin as a traceable aromatic biobased model drug was also monitored as a function of hydrogel composition. To the best of our knowledge, for the first-time furan-modified alginates were reacted and studied with polyethylene glycol-based bis or trismaleimides with different molar masses and architectures, resulting in advanced hydrogels with different behavior.
Collapse
Affiliation(s)
- Clara García-Astrain
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France.
| |
Collapse
|
18
|
Stubbe B, Graulus GJ, Reekmans G, Courtin T, Martins JC, Van Vlierberghe S, Dubruel P, Adriaensens P. A straightforward method for quantification of vinyl functionalized water soluble alginates via 13C-NMR spectroscopy. Int J Biol Macromol 2019; 134:722-729. [PMID: 31078596 DOI: 10.1016/j.ijbiomac.2019.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023]
Abstract
Alginates are fairly abundant in nature and possess many interesting properties, including their biocompatibility and ability to absorb large amounts of water. Hence, increasing interest in their derivatization has been observed and the determination of the number of newly introduced functionalities has become a key issue. For this purpose, literature generally reports on conventional 1H-NMR spectra, typically recorded at elevated temperatures and/or after hydrolysis of the alginate to circumvent line broadening effects resulting from the high viscosity. The present work reports on the modification of alginate with methacrylate functionalities and determination of the resulting degree of substitution (DS), i.e. the number of introduced methacrylate moieties relative to the initial amount of hydroxyl groups along the alginate backbone, via NMR spectroscopy. Freeze-drying and low power water presaturation were applied to improve the quality of the 1H NMR spectra. Nevertheless, it remains a qualitative method, to be used only for mutual comparisons of samples. A new and accurate method for DS determination of methacrylated alginates, based on 13C-NMR spectroscopy, is proposed. Quantitative 13C-NMR spectra were recorded with reduced measuring times by addition of a paramagnetic relaxation agent. The proposed method will also be applicable for other water-soluble functionalized alginates and polysaccharides in general.
Collapse
Affiliation(s)
- B Stubbe
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - G-J Graulus
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - G Reekmans
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - T Courtin
- NMR and Structure Analysis Unit, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - J C Martins
- NMR and Structure Analysis Unit, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - S Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - P Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium.
| | - P Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
19
|
Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1562924] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
20
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
21
|
Dai Y, Chen X, Zhang X. Recent Developments in the Area of Click-Crosslinked Nanocarriers for Drug Delivery. Macromol Rapid Commun 2019; 40:e1800541. [PMID: 30417477 DOI: 10.1002/marc.201800541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/11/2018] [Indexed: 01/06/2025]
Abstract
Click-crosslinking has been widely used for the fabrication of nanocarriers in recent years. Crosslinking can enhance the stability of nanocarriers that have served as an emerging platform for drug delivery to achieve cancer diagnosis and therapy. In crosslinking methods, click reactions have attracted increasing attention owing to their high reaction specificity and physiologically stable products. These reports on click-crosslinked nanocarriers are divided into four sections (nanogels, nanoparticles, micelles, and capsules) according to the types of nanocarriers. Click-crosslinked nanocarriers enhance the solubility of hydrophobic drugs and improve the efficacy of drug delivery owing to their good stability. Stimuli-responsive and targeted strategies can be introduced into click-crosslinked nanocarriers to enhance drug accumulation in tumors.
Collapse
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
22
|
Siqueira P, Siqueira É, de Lima AE, Siqueira G, Pinzón-Garcia AD, Lopes AP, Segura MEC, Isaac A, Pereira FV, Botaro VR. Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E78. [PMID: 30626080 PMCID: PMC6359031 DOI: 10.3390/nano9010078] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023]
Abstract
Hydrogels have been studied as promising materials in different biomedical applications such as cell culture in tissue engineering or in wound healing. In this work, we synthesized different nanocellulose-alginate hydrogels containing cellulose nanocrystals, TEMPO-oxidized cellulose nanocrystals (CNCTs), cellulose nanofibers or TEMPO-oxidized cellulose nanofibers (CNFTs). The hydrogels were freeze-dried and named as gels. The nanocelluloses and the gels were characterized by different techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA), while the biological features were characterized by cytotoxicity and cell growth assays. The addition of CNCTs or CNFTs in alginate gels contributed to the formation of porous structure (diameter of pores in the range between 40 and 150 μm). TEMPO-oxidized cellulose nanofibers have proven to play a crucial role in improving the dimensional stability of the samples when compared to the pure alginate gels, mainly after a thermal post-treatment of these gels containing 50 wt % of CNFT, which significantly increased the Ca2+ crosslinking density in the gel structure. The morphological characteristics, the mechanical properties, and the non-cytotoxic behavior of the CNFT-alginate gels improved bioadhesion, growth, and proliferation of the cells onto the gels. Thus, the alginate-nanocellulose gels might find applications in tissue engineering field, as for instance, in tissue repair or wound healing applications.
Collapse
Affiliation(s)
- Priscila Siqueira
- REDEMAT, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil.
| | - Éder Siqueira
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Ana Elza de Lima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Gilberto Siqueira
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials Laboratory, 8600 Dübendorf, Switzerland.
| | - Ana Delia Pinzón-Garcia
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Ana Paula Lopes
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | | | - Augusta Isaac
- Department of Metallurgical and Materials Engineering Federal, University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Fabiano Vargas Pereira
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | | |
Collapse
|
23
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
24
|
Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:25-32. [DOI: 10.1016/j.msec.2018.03.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/27/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
|
25
|
Silva JM, Caridade SG, Reis RL, Mano JF. Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. SOFT MATTER 2016; 12:1200-1209. [PMID: 26617221 DOI: 10.1039/c5sm02458g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of self-standing multilayered structures based on biopolymers has been attracting increasing interest due to their potential in the biomedical field. However, their use has been limited due to their gel-like properties. Herein, we report the combination of covalent and ionic cross-linking, using natural and non-cytotoxic cross-linkers, such as genipin and calcium chloride (CaCl2). Combining both cross-linking types the mechanical properties of the multilayers increased and the water uptake ability decreased. The ionic cross-linking of multilayered chitosan (CHI)-alginate (ALG) films led to freestanding membranes with multiple interesting properties, such as: improved mechanical strength, calcium-induced adhesion and shape memory ability. The use of CaCl2 also offered the possibility of reversibly switching all of these properties by simple immersion in a chelate solution. We attribute the switch-ability of the mechanical properties, shape memory ability and the propensity for induced-adhesion to the ionic cross-linking of the multilayers. These findings suggested the potential of the developed polysaccharide freestanding membranes in a plethora of research fields, including in biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Joana M Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia G Caridade
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Zhang Y, Liu J, Huang L, Wang Z, Wang L. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci Rep 2015; 5:12374. [PMID: 26205586 PMCID: PMC4513302 DOI: 10.1038/srep12374] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022] Open
Abstract
Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs' mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate's early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin's photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Yeshun Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Lei Huang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Medical Research Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| |
Collapse
|