1
|
Nair RS, Sobhan PK, Shenoy SJ, Prabhu MA, Kumar V, Ramachandran S, Anilkumar TV. Mitigation of Fibrosis after Myocardial Infarction in Rats by Using a Porcine Cholecyst Extracellular Matrix. Comp Med 2023; 73:312-323. [PMID: 37527924 PMCID: PMC10702285 DOI: 10.30802/aalas-cm-22-000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 08/03/2023]
Abstract
Fibrosis that occurs after nonfatal myocardial infarction (MI) is an irreversible reparative cardiac tissue remodeling process characterized by progressive deposition of highly cross-linked type I collagen. No currently available therapeutic strategy prevents or reverses MI-associated fibrotic scarring of myocardium. In this study, we used an epicardial graft prepared of porcine cholecystic extracellular matrix to treat experimental nonfatal MI in rats. Graft-assisted healing was characterized by reduced fibrosis, with scanty deposition of type I collagen. Histologically, the tissue response was associated with a favorable regenerative reaction predominated by CD4-positive helper T lymphocytes, enhanced angiogenesis, and infiltration of proliferating cells. These observations indicate that porcine cholecystic extracellular matrix delayed the fibrotic reaction and support its use as a potential biomaterial for mitigating fibrosis after MI. Delaying the progression of cardiac tissue remodeling may widen the therapeutic window for management of scarring after MI.
Collapse
Affiliation(s)
- Reshma S Nair
- Division of Experimental Pathology; Department of Biochemistry and Molecular Medicine, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | | | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Mukund A Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India; Department of Cardiology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India Current affiliations; Diabetes Research Program, Department of Medicine, New York University School of Medicine, New York
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India Current affiliations
| | | |
Collapse
|
2
|
Nair RS, Sobhan PK, Shenoy SJ, Prabhu MA, Rema AM, Ramachandran S, C Geetha S, V Pratheesh K, Mony MP, Raj R, Anilkumar TV. A porcine cholecystic extracellular matrix conductive scaffold for cardiac tissue repair. J Biomed Mater Res B Appl Biomater 2022; 110:2039-2049. [PMID: 35305082 DOI: 10.1002/jbm.b.35058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 11/08/2022]
Abstract
Cardiac tissue engineering using cells, scaffolds or signaling molecules is a promising approach for replacement or repair of damaged myocardium. This study addressed the contemporary need for a conductive biomimetic nanocomposite scaffold for cardiac tissue engineering by examining the use of a gold nanoparticle-incorporated porcine cholecystic extracellular matrix for the same. The scaffold had an electrical conductivity (0.74 ± 0.03 S/m) within the range of native myocardium. It was a suitable substrate for the growth and differentiation of cardiomyoblast (H9c2) as well as rat mesenchymal stem cells to cardiomyocyte-like cells. Moreover, as an epicardial patch, the scaffold promoted neovascularisation and cell proliferation in infarcted myocardium of rats. It was concluded that the gold nanoparticle coated cholecystic extracellular matrix is a prospective biomaterial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Reshma S Nair
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Mukund A Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Aswathy M Rema
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Surendran C Geetha
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Kanakarajan V Pratheesh
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Manjula P Mony
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Reshmi Raj
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Thapasimuthu V Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India.,School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| |
Collapse
|
3
|
Mony MP, Shenoy SJ, Raj R, Geetha CS, Pratheesh KV, Nair RS, Purnima C, Anilkumar TV. Gelatin-Modified Cholecyst-Derived Scaffold Promotes Angiogenesis and Faster Healing of Diabetic Wounds. ACS APPLIED BIO MATERIALS 2021; 4:3320-3331. [DOI: 10.1021/acsabm.0c01648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Thapasimuthu V. Anilkumar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala, Vithura 695551, India
| |
Collapse
|
4
|
Raj R, Shenoy SJ, Mony MP, Pratheesh KV, Nair RS, Geetha CS, Sobhan PK, Purnima C, Anilkumar TV. Surface Modification of Polypropylene Mesh with a Porcine Cholecystic Extracellular Matrix Hydrogel for Mitigating Host Tissue Reaction. ACS APPLIED BIO MATERIALS 2021; 4:3304-3319. [DOI: 10.1021/acsabm.0c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Sachin J. Shenoy
- Division of In Vivo Models and Testing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Manjula P. Mony
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Kanakarajan V. Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Reshma S. Nair
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandrika S. Geetha
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Praveen K. Sobhan
- Division of Tissue Culture, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandramohanan Purnima
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Thapasimuthu V. Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
- School of Biology, Indian Institute of Science Education and Research—Thiruvananthapuram, Maruthamala, Vithura 695551, India
| |
Collapse
|
5
|
Raj R, Sobhan PK, Pratheesh KV, Anilkumar TV. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. J Biomed Mater Res A 2020; 108:1922-1933. [PMID: 32319161 DOI: 10.1002/jbm.a.36955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
Tailoring the properties of extracellular matrix (ECM) based hydrogels by conjugating with synthetic polymers is an emerging method for designing hybridhydrogels for a wide range of tissue engineering applications. In this study, poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer at variable concentrations (ranging from 0.2 to 2% wt/vol) was conjugated with porcine cholecyst derived ECM (C-ECM) (1% wt/vol) and prepared a biosynthetic hydrogel having enhanced physico-mechanical properties, as required for skeletal muscle tissue engineering. The C-ECM was functionalized with acrylate groups using activated N-hydroxysuccinimide ester-based chemistry and then conjugated with PEGDA via free-radical polymerization in presence of ammonium persulfate and ascorbic acid. The physicochemical characteristics of the hydrogels were evaluated by Fourier transform infrared spectroscopy and environmental scanning electron microscopy. Further, the hydrogel properties were studied by evaluating rheology, swelling, gelation time, percentage gel fraction, in vitro degradation, and mechanical strength. Biocompatibility of the gel formulations were assessed using the C2C12 skeletal myoblast cells. The hydrogel formulations containing 0.2 and 0.5% wt/vol of PEGDA were non-cytotoxic and found suitable for growth and proliferation of skeletal myoblasts. The study demonstrated a method for modulating the properties of ECM hydrogels through conjugation with bio-inert polymers for skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Kanakarajan V Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Thapasimuthu V Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| |
Collapse
|
6
|
Controlled cross‐linking of porcine cholecyst extracellular matrix for preparing tissue engineering scaffold. J Biomed Mater Res B Appl Biomater 2019; 108:1057-1067. [DOI: 10.1002/jbm.b.34457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
|
7
|
Muhamed J, Anilkumar T, Rajan A, Surendran A, Jaleel A. Identification of potentially immunogenic proteins in porcine cholecyst extracellular matrix. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf4e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Belgodere JA, King CT, Bursavich JB, Burow ME, Martin EC, Jung JP. Engineering Breast Cancer Microenvironments and 3D Bioprinting. Front Bioeng Biotechnol 2018; 6:66. [PMID: 29881724 PMCID: PMC5978274 DOI: 10.3389/fbioe.2018.00066] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal-cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments.
Collapse
Affiliation(s)
- Jorge A. Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jacob B. Bursavich
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew E. Burow
- Department of Medicine, Section Hematology/Oncology, Tulane University, New Orleans, LA, United States
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Holovenko Y, Korshykov I. Species diversity and distribution of lichens in Kryvyi Rih quarry dump complexes. UKRAINIAN BOTANICAL JOURNAL 2018. [DOI: 10.15407/ukrbotj75.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Balakrishnan-nair DK, Nair ND, Venugopal SK, Das VN, George S, Abraham MJ, Eassow S, Alison MR, Sainulabdeen A, Anilkumar TV. An Immunopathological Evaluation of the Porcine Cholecyst Matrix as a Muscle Repair Graft in a Male Rat Abdominal Wall Defect Model. Toxicol Pathol 2018; 46:169-183. [DOI: 10.1177/0192623317752894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing use of animal-based biomaterials for regenerative medical applications, the need for their safety assessment is paramount. A porcine cholecyst-derived scaffold (CDS), intended as a muscle repair graft, prepared by a nondetergent/enzymatic method was engrafted in a rat abdominal wall defect model. Host tissue–scaffold interface samples were collected 2, 8, and 16 weeks postimplantation and evaluated by histopathology, immunohistochemistry, and electron microscopy. The nature of the tissue reaction was compared with those induced by a jejunum-derived scaffold (JDS) prepared by the same method and a commercial-grade small intestinal submucosa (CSIS) scaffold. A study of the immunopathological response in major lymphoid tissues and immunophenotyping for M1 and M2 macrophages was performed at the host tissue–scaffold interface. Further, “irritancy scores” for CDS and JDS were determined using CSIS as the reference material. Both CDS and JDS appeared to be potential biomaterials for muscle grafts, but the former stimulated a skeletal muscle tissue remodeling response predominated by M2 macrophages. The data support the notion that biomaterials with similar biocompatibility, based on local tissue response on implantation, may cause differential immunogenicity. Additionally, CDS compared to JDS and CSIS was found to be less immunotoxic.
Collapse
Affiliation(s)
- Dhanush Krishna Balakrishnan-nair
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Narayanan Divakaran Nair
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Syam Kunnekkattu Venugopal
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Vijayan Narayana Das
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Sisilamma George
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Mammen John Abraham
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Saji Eassow
- Meat Products of India Ltd., Koothattukulam, Ernakulam District, Edayar, India
| | - Malcolm Ronald Alison
- Barts Cancer Institute, University of London, Charterhouse Square, London, United Kingdom
| | - Anoop Sainulabdeen
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Thapasimuthu Vijayamma Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, India
| |
Collapse
|