1
|
Ehlinger M, Azoti W, Crom LL, Berthe S, Ollivier M, Favreau H, Tamir M, Bahlouli N. Analysis of load distribution on the plate and lateral hinge of a valgus opening high tibial osteotomy during weight-bearing: a finite element analysis. Orthop Traumatol Surg Res 2024:103956. [PMID: 39038516 DOI: 10.1016/j.otsr.2024.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Valgus high tibial osteotomy (HTO) is indicated for managing isolated medial knee osteoarthritis in a young patient with a metaphyseal deformity of the proximal tibia. In a medial opening HTO, maintaining the integrity of the lateral hinge is crucial for ensuring proper healing and correction retention. Using a locked plate to stabilize an HTO is common practice, allowing for earlier weight-bearing. The objective of this study was therefore to measure and track the mechanical load distribution on a locked fixation plate and the lateral hinge of an HTO using a finite element (FE) model simulating single-leg stance loading. HYPOTHESIS The working hypothesis was that during weight-bearing, the plate and the lateral hinge absorb stress asymmetrically, predominantly on the plate. MATERIAL AND METHODS A numerical model of an HTO stabilized with a locked plate was developed based on the actual geometry of a healthy proximal tibia (using Autodesk Fusion 360 and Altair HyperWorks software). In this finite element simulation of loading, a mesh convergence study was conducted to optimize the accuracy of the numerical model results. The primary outcome measure was the maximum stress value in the affected areas (Von Mises stress, in MPa) of the plate and the lateral hinge. RESULTS The maximum stress intensity in the plate was approximately 20.29 MPa. The maximum stress intensity in the bony hinge was about 5.6 MPa. The results of the mesh convergence study for the hinge and the plate enabled defining the most suitable model for future FE studies: a 4 mm mesh for all model elements except for the high-stress area in the plate and the hinge, which were meshed with a 0.7 mm element size. This adaptation provided greater precision in the study. DISCUSSION There is a distribution and allocation of stress both on the plate and the hinge, underlining the significance of the plate and the absolute necessity of preserving the hinge. Predictably, the plate absorbs the majority of the load, more than three times that of the hinge. CONCLUSION The hypothesis is confirmed; however, additional studies would be necessary to validate these numerical results: an experimental component on instrumented cadaveric bones, as well as comparative studies of different fixation plates. LEVEL OF EVIDENCE V, expert opinion; controlled laboratory study.
Collapse
Affiliation(s)
- Matthieu Ehlinger
- ICube Laboratory - University of Strasbourg - CNRS, 4 rue de la Manufacture des Tabacs, 67000 Strasbourg, France; Department of Orthopedic Surgery and Traumatology, Hautepierre II Hospital, 1 Avenue Molière, 67098 Strasbourg Cedex, France.
| | - Wiayo Azoti
- INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France; Clément Ader Institute (ICA), Federal University Toulouse Midi-Pyrénées, UMR CNRS 5312, INSA, ISAE-SUPAERO, IMT Mines Albi, UPS, 3 rue Caroline Aigle, 31400 Toulouse, France
| | - Lil Le Crom
- ICube Laboratory - University of Strasbourg - CNRS, 4 rue de la Manufacture des Tabacs, 67000 Strasbourg, France
| | - Samuel Berthe
- ICube Laboratory - University of Strasbourg - CNRS, 4 rue de la Manufacture des Tabacs, 67000 Strasbourg, France
| | - Matthieu Ollivier
- Department of Orthopedic Surgery, Sainte-Marguerite Hospital, University Hospital of Marseille, 270 Boulevard Sainte-Marguerite, 13009 Marseille, France
| | - Henri Favreau
- Department of Orthopedic Surgery and Traumatology, Hautepierre II Hospital, 1 Avenue Molière, 67098 Strasbourg Cedex, France
| | - Mekki Tamir
- Department of Orthopedic Surgery and Traumatology, Hautepierre II Hospital, 1 Avenue Molière, 67098 Strasbourg Cedex, France
| | - Nadia Bahlouli
- ICube Laboratory - University of Strasbourg - CNRS, 4 rue de la Manufacture des Tabacs, 67000 Strasbourg, France
| |
Collapse
|
2
|
Lee JA, Koh YG, Kim PS, Park JH, Kang KT. Effect of surface matching mismatch of focal knee articular prosthetic on tibiofemoral contact stress using finite element analysis. Bone Joint Res 2023; 12:497-503. [PMID: 37582511 PMCID: PMC10427223 DOI: 10.1302/2046-3758.128.bjr-2023-0010.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aims Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model. Methods The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions. Results Contact stress on medial and lateral femoral and tibial cartilages increased and decreased, respectively, the most and the least in the protruding model compared to the intact model. The deep model exhibited the closest tibiofemoral contact stress to the intact model. In addition, the deep model demonstrated load sharing between the bone and the implant, while the protruding and flush model showed stress shielding. The data revealed that resurfacing with a focal knee arthroplasty does not cause increased contact pressure with deep implantation. However, protruding implantation leads to increased contact pressure, decreased bone stress, and biomechanical disadvantage in an in vivo application. Conclusion These results show that it is preferable to leave an edge slightly deep rather than flush and protruding.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, South Korea
| | - Paul S. Kim
- Department of Orthopaedic Surgery, The Bone Hospital, Seoul, South Korea
| | - Joon-Hee Park
- Department of Anesthesiology & Pain Medicine, Hallym University College of Medicine and Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Kang KT, Koh YG, Park KM, Choi CH, Jung M, Cho H, Kim SH. Effects of the Anterolateral Ligament and Anterior Cruciate Ligament on Knee Joint Mechanics: A Biomechanical Study Using Computational Modeling. Orthop J Sports Med 2022; 10:23259671221084970. [PMID: 35400144 PMCID: PMC8988680 DOI: 10.1177/23259671221084970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/22/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Recent studies on lateral knee anatomy have reported the presence of a true ligament structure, the anterolateral ligament (ALL), in the anterolateral region of the knee joint. However, its biomechanical effects have not been fully elucidated. Purpose: To investigate, by using computer simulation, the association between the ALL and anterior cruciate ligament (ACL) under dynamic loading conditions. Study Design: Descriptive laboratory study; Level of evidence, 5. Methods: The authors combined medical imaging from 5 healthy participants with motion capture to create participant-specific knee models that simulated the entire 12 degrees of freedom of tibiofemoral (TF) and patellofemoral (PF) joint behaviors. These dynamic computational models were validated using electromyographic data, muscle activation data, and data from previous experimental studies. Forces exerted on the ALL with ACL deficiency and on the ACL with ALL deficiency, as well as TF and PF contact forces with deficiencies of the ACL, ALL, and the entire ligament structure, were evaluated under gait and squat loading. A single gait cycle and squat cycle were divided into 11 time points (periods 0.0-1.0). Simulated ligament forces and contact forces were compared using nonparametric repeated-measures Friedman tests. Results: Force exerted on the ALL significantly increased with ACL deficiency under both gait- and squat-loading conditions. With ACL deficiency, the mean force on the ALL increased by 129.7% under gait loading in the 0.4 period ( P < .05) and increased by 189% under high flexion during the entire cycle of squat loading ( P < .05). A similar trend of significantly increased force on the ACL was observed with ALL deficiency. Contact forces on the TF and PF joints with deficiencies of the ACL, ALL, and entire ligament structure showed a complicated pattern. However, contact force exerted on TF and PF joints with respect to deficiencies of ACL and ALL significantly increased under both gait- and squat-loading conditions. Conclusion: The results of this computer simulation study indicate that the ACL and the ALL of the lateral knee joint act as secondary stabilizers to each other under dynamic load conditions.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Chong-Hyuk Choi
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunik Cho
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Existence of Gender-Based Difference in Morphology of Convex Lateral Tibial Plateau in Korean Population Primary Knee Joint Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6641717. [PMID: 34485524 PMCID: PMC8410385 DOI: 10.1155/2021/6641717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022]
Abstract
Purpose Morphological differences in the knee joints of females and males have been reported in a previous study. These differences have realized the need of developing a gender-specific prosthesis. However, anatomical studies on gender-based differences in the proximal tibial plateau's sagittal curvature have rarely been conducted. Therefore, this study is aimed at evaluating the geometry of the sagittal curvature of the proximal tibial plateau in the Korean population. Methods Three-dimensional data for the sagittal curvature of the tibial plateau morphology from 1976 patients (i.e., 299 male and 1677 female) were assessed using magnetic resonance imaging. The sagittal profiles of the tibial plateaus were also evaluated. The independent t-test and paired t-test were used for statistical analysis. Results The proximal tibia had concave and convex surfaces in the medial and lateral plateaus, respectively, for both genders. In addition, the medial diameter of the tibial plateau was significantly greater than the lateral diameter for both genders. Gender-based difference was not found in the medial diameter of the tibial plateau but was observed in the lateral diameter. Conclusion These results may provide guidelines for a suitable knee implant design for the Korean patients. The incorporation of this shape information in the medial and lateral sides in the prosthetics for a total knee arthroplasty and a lateral unicompartmental knee arthroplasty can improve knee range motion.
Collapse
|
5
|
Zaylor W, Halloran JP. WraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology. J Biomech Eng 2021; 143:081012. [PMID: 33825816 DOI: 10.1115/1.4050810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Knee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force-length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.
Collapse
Affiliation(s)
- William Zaylor
- Department of Mechanical Engineering, Cleveland State University, Cleveland OH 44115
| | - Jason P Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, DC 99164
| |
Collapse
|
6
|
Kang KT, Koh YG, Lee JA, Lee JJ, Kim PS, Kwon SK. The influence of the number of holes in the open wedge high tibial osteotomy on knee biomechanics using finite element analysis. Orthop Traumatol Surg Res 2021; 107:102884. [PMID: 33711507 DOI: 10.1016/j.otsr.2021.102884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The most significant differences of high tibial osteotomy (HTO) were found in terms of plate length, and this was related to number of holes distal region of the plate below wedge. The purpose of this study is to evaluate the biomechanical effects of three different designs medial opening wedge plates. HYPOTHESIS The design of the HTO plate influenced the outcome of the biomechanics. METHODS The HTO model was simulated using finite element (FE) model. This FE investigation included three types of loading conditions corresponding to the loads used in the experimental study for model validation and model predictions for clinically relevant loading scenarios. The average stress and contact stress were evaluated. RESULTS The highest average stress was observed in the TomoFix. Conversely, the stress on the bone declined in the order of Puddu, Maxi and TomoFix plates. The micromotion in the wedge displayed a similar trend to the stress on bone. The highest and lowest contact stresses on the medial meniscus were observed in the Puddu and TomoFix plate, respectively. However, an opposite trend was observed in the lateral meniscus. The contact stress on medial and lateral menisci decreased and increased, respectively, in all three different plates when compared to those in the intact model. DISCUSSION The TomoFix plate exhibited the highest stability relative to the micromotions of the wedge. However, in terms of the stress on the bone and plates, a stress-shielding effect could exist in the TomoFix plate. Additionally, the contact stress on the articular surface suggested that a complicated relationship could exist with respect to the plate design. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, 06698 Seocho-gu, Seoul, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea
| | - Jae Jung Lee
- Department of Orthopaedic Surgery, Yonsei BonSarang Hospital, 706 Buil-ro, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Paul Shinil Kim
- Department of orthopaedic surgery, The bonehospital, 67, Dongjak-daero, Dongjak-gu, 07014 Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Department of Orthopaedic Surgery, Yonsei BonSarang Hospital, 706 Buil-ro, Bucheon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Koh YG, Hong HT, Lee HY, Kim HJ, Kang KT. Influence of Variation in Sagittal Placement of the Femoral Component after Cruciate-Retaining Total Knee Arthroplasty. J Knee Surg 2021; 34:444-451. [PMID: 31499566 DOI: 10.1055/s-0039-1696958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prosthetic alignment is an important factor for long-term survival in cruciate-retaining (CR) total knee arthroplasty (TKA). The purpose of this study is to investigate the influence of sagittal placement of the femoral component on tibiofemoral (TF) kinematics and kinetics in CR-TKA. Five sagittal placements of femoral component models with -3, 0, 3, 5, and 7 degrees of flexion are developed. The TF joint kinematics, quadriceps force, patellofemoral contact force, and posterior cruciate ligament force are evaluated using the models under deep knee-bend loading. The kinematics of posterior TF translation is found to occur with the increase in femoral-component flexion. The quadriceps force and patellofemoral contact force decrease with the femoral-component flexion increase. In addition, extension of the femoral component increases with the increase in posterior cruciate ligament force. The flexed femoral component in CR-TKA provides a positive biomechanical effect compared with a neutral position. Slight flexion could be an effective alternative technique to enable positive biomechanical effects with TKA prostheses.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Hyoung-Taek Hong
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hwa-Yong Lee
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyo-Jeong Kim
- Department of Sport and Healthy Aging, Korea National Sport University, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Finite element analysis of the influence of the posterior tibial slope on mobile-bearing unicompartmental knee arthroplasty. Knee 2021; 29:116-125. [PMID: 33610118 DOI: 10.1016/j.knee.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The most common modes of failure reported in unicompartmental knee arthroplasty (UKA) in its first two decades were wear on the polyethylene (PE) insert, component loosening, and progressive osteoarthritis in the other compartment. The rates of implant failure due to poor component positioning in patients who have undergone UKA have been reported. However, the effect of the posterior tibial slope on the biomechanical behavior of mobile-bearing Oxford medial UKA remains unknown. METHODS We applied finite element (FE) analysis to evaluate the effects of the posterior tibial slope in mobile-bearing UKA on the contact stresses in the superior and inferior surfaces of PE inserts and articular cartilage as well as the forces exerted on the anterior cruciate ligament (ACL). Seven FE models for posterior tibial slopes of -1°, 1°, 3°, 5°, 7°, 9°, and 11° were developed and analyzed under normal-level walking conditions based on this approach. RESULTS The maximum contact stresses on both the superior and inferior surfaces of the PE insert decreased as the posterior tibial slope increased. However, the maximum contact stress on the lateral articular cartilage and the force exerted on the ACL increased as the posterior tibial slope increased. CONCLUSIONS Increasing the tibial slope led to a reduction in the contact stress on the PE insert. However, a high contact stress on the other compartment and increased ACL force can cause progressive osteoarthritis in the other compartment and failure of the ACL.
Collapse
|
9
|
The posterior cortical axis as an alternative reference for femoral component placement in total knee arthroplasty. J Orthop Surg Res 2020; 15:603. [PMID: 33308249 PMCID: PMC7730782 DOI: 10.1186/s13018-020-02146-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Although several reference axes have been established for determining femoral rotational alignment during total knee arthroplasty (TKA), the most accurate axis is undetermined. This study determines the relationship between the posterior cortical axis (PCA) and the trochlear anterior line (TAL) of the femur in relation to the epicondylar axis. Methods A total of 341 patients who underwent TKA for osteoarthritis were enrolled. Patients who had undergone previous bony surgery or replacement that might have changed the femoral geometry were excluded. Finally, 336 patients (200 females and 136 males) were included in the study. The angles between the transepicondylar axis (TEA) and TAL and TEA and the femoral PCA (FPCA) were evaluated. We also assessed whether there was any significant differences in variance and gender in these two angles. Student’s t tests were used to determine the significance of coronal alignment and any gender-based differences. The variances between the TAL/TEA and FPCA/TEA angles were compared using F tests. Results The FPCA was externally rotated by 2.6° ± 3.6°, and the trochlear anterior line was internally rotated by 5.2° ± 5.5°, relative to the TEA. Gender-based differences were observed in the comparisons between anatomical references and TEA. Conclusions The FPCA is a more conservative landmark than the TAL for intraoperative or postoperative approximation of the TEA. When conventional reference axes, such as the posterior condylar axis and the anteroposterior axis, are inaccurate, surgeons can refer to this alternative reference. These findings demonstrate that the FPCA may be useful for determining the rotational alignment of the femoral component before and during TKA.
Collapse
|
10
|
Koh YG, Lee JA, Kim PS, Kim HJ, Kang K, Kang KT. Effects of the material properties of a focal knee articular prosthetic on the human knee joint using computational simulation. Knee 2020; 27:1484-1491. [PMID: 33010765 DOI: 10.1016/j.knee.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Localized cartilage defects are related to joint pain and reduced function to the development of osteoarthritis. The mechanical properties of the implant for treatment do influence its longevity. Therefore, we aimed to evaluate the effect of material properties' variations of anatomically shaped focal knee implants in the knee joint using numerical finite element analysis. METHODS Computational simulations were performed for different cases including an intact knee, a knee with a focal cartilage defect, and a knee fitted with a focal articular prosthetic having three distinct mechanical properties: cobalt-chromium, pyrolytic carbon, and polyethylene. Femoral cartilage, tibial cartilage, and menisci contact pressures were evaluated under the load. In addition, bone stress was evaluated to investigate the stress shielding effect. RESULTS Compared with the intact model, the contact stress of the focal implant model was increased; on the femoral lateral cartilage by 14%, on medial and lateral tibial cartilages by nine percent and 10%, on medial and lateral menisci by 23% and 20%. In contrast, the focal implant model had no effect on the menisci but contact stress on the tibial cartilage increased compared with the intact model. The BioPoly model showed the lowest contact stress on femoral and tibial cartilages. Additionally, the cobalt-chromium model showed the lowest bone stress that improved the load-sharing effect. CONCLUSIONS The results suggested that implant material properties are an important parameter in the design of a focal implant. The polyethylene model potentially restored the intact knee contact mechanics and it reduced the risk of physiological damage to the articular cartilage.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Paul Shinil Kim
- Department of Orthopaedic Surgery, The Bone Hospital, Seoul, Republic of Korea
| | - Hyo-Jeong Kim
- Department of Sport and Healthy Aging, Korea National Sport University, Seoul, Republic of Korea
| | - Kiwon Kang
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Gaja Yonsei Orthopaedic Clinic, Incheon, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Nam JH, Koh YG, Kim PS, Kang K, Kang KT. The femoral trochlear anterior line is a better alternative intra-operative reference compared to femoral anterior tangent line for femoral rotation in both genders in total knee arthroplasty. J Exp Orthop 2020; 7:43. [PMID: 32514814 PMCID: PMC7280378 DOI: 10.1186/s40634-020-00259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the most reliable reference axis for the femoral component rotation in TKA patients by comparing the trochlear anterior line (TAL) and the femoral anterior tangent line (FAT). To evaluate the variability of each anatomic parameter in a Korean population. Methods Magnetic resonance images (MRIs) were taken for 500 patients (400 females and 100 males) with knee joint osteoarthritis who had Kellgren and Lawrence grade 3 and 4 prior to TKA in our institution between February 2016 and September 2017. It was investigated that whether significant differences in variance and gender exist for TAL and FAT. Results TAL and the FAT were internally rotated by 5.1° ± 3.1° and 6.8° ± 6.1°, respectively, about the Transepicondylar axis (TEA). Although no gender-related differences were found for the TAL, they were found for the FAT. The variance of the TAL with respect to the TEA was significantly smaller compared with that for the FAT and thus exhibited a more consistent distribution. In addition, such a trend was found for both genders. Conclusions The results show that the TAL is a favorable index for appropriate rotational alignment of the femoral component in TKA.
Collapse
Affiliation(s)
- Ji-Hoon Nam
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Paul Shinil Kim
- Department of Orthopaedic Surgery, The bone hospital, 67, Dongjak-daero, Dongjak-gu, Seoul, Republic of Korea
| | - Kiwon Kang
- Orthopaedic Clinic, Gaja Yonsei Hospital, A-304,7, Janggogae-ro 337 beon-gil, Seo-gu, Incheon, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Koh YG, Nam JH, Chung HS, Lee HY, Kang KT. Morphologic difference and size mismatch in the medial and lateral tibial condyles exist with respect to gender for unicompartmental knee arthroplasty in the Korean population. Knee Surg Sports Traumatol Arthrosc 2020; 28:1789-1796. [PMID: 31263927 DOI: 10.1007/s00167-019-05600-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to characterize the geometry of the proximal tibia in both genders in the Korean population. Anthropometric data on the medial and lateral tibial condyles of the osteoarthritic knees of 149 males and 814 females were obtained using three-dimensional magnetic resonance imaging. METHODS In the medial and lateral proximal tibial condyles, the anteroposterior (AP) dimension, widest dimension (WD) at defined points, and condylar aspect ratio were evaluated. These measurements were compared with similar dimensions of the tibial components from five commonly used unicompartmental knee arthroplasty (UKA) designs in Korea. RESULTS Both the AP dimension and WD in the medial and lateral tibial condyles of the male patients were significantly greater than those of the female patients (P < 0.05). In addition, the AP dimension and WD were greater in the medial than in the lateral tibial condyle (P < 0.05). There was WD overhang in three and two prostheses in the medial and lateral tibial condyles, respectively. A decrease in the condylar aspect ratio with an increasing AP dimension was found in the medial and lateral tibial condyles for both the male and female patients. CONCLUSIONS Smaller medial and lateral tibial condylar dimensions are more frequent in Korean women than in Korean men. This study highlights the finding that conventional UKA designs lead to size mismatch in the Korean population and may indicate an important guideline on proper gender-specific UKA tibial prostheses with different WD/AP dimension aspect ratios. In addition, this study suggests that the shape of the medial tibial plateau is different to that of the lateral plateau, which can lead to a mediolateral overhang for medial UKA in an attempt to optimize the AP coverage. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Ji-Hoon Nam
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Seok Chung
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Hwa-Yong Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Morphometric study of gender difference in osteoarthritis posterior tibial slope using three-dimensional magnetic resonance imaging. Surg Radiol Anat 2020; 42:667-672. [PMID: 32086624 DOI: 10.1007/s00276-020-02429-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Posterior tibial slope (PTS) is an important parameter of sagittal alignment associated with postoperative stability and kinematics after total knee arthroplasty (TKA). However, data are limited regarding the innate gender differences in PTS in Koreans. The current study separately measured the PTS of the medial and lateral tibial plateau on magnetic resonance images of 511 patients with knee joint osteoarthritis who had Kellgren and Lawrence grade 3 and 4 (430 women, 81 men) and compared the measurements between and within the genders. The tibia was then rotated to the tibial plateau with the tibial centroid axis and the PTS was evaluated from best-fit planes on the surface of the proximal tibia and individually for the medial, lateral, and overall plateaus. The average overall PTS was 10.0° ± 3.5°. The average overall PTS of the female and male patients was 10.2° ± 3.4° and 8.8° ± 4.0°, respectively. The average medial PTS was 10.4° ± 4.0°, significantly greater than the mean lateral PTS of 8.7° ± 3.9° (P < 0.05). The average medial and lateral tibial slopes for female patients were 10.7° ± 3.8° and 8.8° ± 3.8°, respectively, while the average medial and lateral tibial slopes for male patients were 8.9° ± 4.8° and 7.9° ± 4.7°, respectively. The medial and overall PTS were significantly greater in female patients than in male patients (P < 0.05). The results showed a gender difference in PTS and that medial PTS was greater than lateral PTS. These findings have clinical relevance in knee reconstructive surgery for determining ideal placement of the posterior slope tibial component. Surgeons should be aware of variability and gender differences in the tibial slope of patients undergoing TKA.
Collapse
|
14
|
Kang KT, Koh YG, Lee JA, Lee JJ, Kwon SK. Biomechanical effect of a lateral hinge fracture for a medial opening wedge high tibial osteotomy: finite element study. J Orthop Surg Res 2020; 15:63. [PMID: 32085786 PMCID: PMC7035662 DOI: 10.1186/s13018-020-01597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the biomechanical effect on the Takeuchi classification of lateral hinge fracture (LHF) after an opening wedge high tibial osteotomy (HTO). METHODS We performed an FE simulation for type I, type II, and type III in accordance with the Takeuchi classification. The stresses on the bone and plate, wedge micromotion, and forces on ligaments were evaluated to investigate stress-shielding effect, plate stability, and biomechanical change, respectively, in three different types of LHF HTO and with the HTO without LHF model (non-LHF) models. RESULTS The greatest stress-shielding effect and wedge micromotion were observed in type II LHF (distal portion fracture). The type II and type III (lateral plateau fracture) models exhibited a reduction in ACL force and an increase in PCL force compared with the HTO without LHF model. However, the type I (osteotomy line fracture) and HTO without LHF models did not exhibit a significant biomechanical effect. This study demonstrates that Takeuchi type II and type III LHF models provide unstable structures compared with the type I and HTO without LHF models. CONCLUSIONS HTO should be performed while considering a medial opening wedge HTO to avoid a type II and type III LHF as a potential complication.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Jung Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
15
|
Kang KT, Koh YG, Park KM, Choi CH, Jung M, Shin J, Kim SH. The anterolateral ligament is a secondary stabilizer in the knee joint: A validated computational model of the biomechanical effects of a deficient anterior cruciate ligament and anterolateral ligament on knee joint kinematics. Bone Joint Res 2019; 8:509-517. [PMID: 31832170 PMCID: PMC6888742 DOI: 10.1302/2046-3758.811.bjr-2019-0103.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objectives The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions.Cite this article: Bone Joint Res 2019;8:509-517.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, South Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Chong-Hyuck Choi
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Jung
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jucheol Shin
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Koh YG, Lee JA, Chun HJ, Kang KT. Biomechanical simulation for cartilage regeneration of knee joint osteoarthritis with composite scaffold using ply angle optimization. J Biomater Appl 2019; 34:1019-1027. [PMID: 31739728 DOI: 10.1177/0885328219886195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center and Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Koh YG, Hong HT, Kang KT. Biomechanical Effect of UHMWPE and CFR-PEEK Insert on Tibial Component in Unicompartmental Knee Replacement in Different Varus and Valgus Alignments. MATERIALS 2019; 12:ma12203345. [PMID: 31615060 PMCID: PMC6829307 DOI: 10.3390/ma12203345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
Abstract
The current study aims to analyze the biomechanical effects of ultra-high molecular weight polyethylene (UHMWPE) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK) inserts, in varus/valgus alignment, for a tibial component, from 9° varus to 9° valgus, in unicompartmental knee replacement (UKR). The effects on bone stress, collateral ligament force, and contact stress on other compartments were evaluated under gait cycle conditions, by using a validated finite element model. In the UHMWPE model, the von Mises’ stress on the cortical bone region significantly increased as the tibial tray was in valgus >6°, which might increase the risk of residual pain, and when in valgus >3° for CFR-PEEK. The contact stress on other UHMWPE compartments decreased in valgus and increased in varus, as compared to the neutral position. In CFR-PEEK, it increased in valgus and decreased in varus. The forces on medial collateral ligaments increased in valgus, when compared to the neutral position in UHMWPE and CFR-PEEK. The results indicate that UKR with UHMWPE showed positive biomechanical outputs under neutral and 3° varus conditions. UKR with CFR-PEEK showed positive biomechanical outputs for up to 6° varus alignments. The valgus alignment should be avoided.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, Korea.
| | - Hyoung-Taek Hong
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
18
|
Kang KT, Koh YG, Park KM, Lee JS, Kwon SK. Biomechanical analysis of a changed posterior condylar offset under deep knee bend loading in cruciate-retaining total knee arthroplasty. Biomed Mater Eng 2019; 30:157-169. [PMID: 30741664 DOI: 10.3233/bme-191041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The conservation of the joint anatomy is an important factor in total knee arthroplasty (TKA). The restoration of the femoral posterior condylar offset (PCO) has been well known to influence the clinical outcome after TKA. OBJECTIVE The purpose of this study was to determine the mechanism of PCO in finite element models with conservation of subject anatomy and different PCO of ±1, ±2, ±3 mm in posterior direction using posterior cruciate ligament-retaining TKA. METHODS Using a computational simulation, we investigated the influence of the changes in PCO on the contact stress in the polyethylene (PE) insert and patellar button, on the forces on the collateral and posterior cruciate ligament, and on the quadriceps muscle and patellar tendon forces. The computational simulation loading condition was deep knee bend. RESULTS The contact stresses on the PE insert increased, whereas those on the patellar button decreased as posterior condylar offset translated to the posterior direction. The forces exerted on the posterior cruciate ligament and collateral ligaments increased as PCO translated to the posterior direction. The translation of PCO in the anterior direction, in an equivalent flexion angle, required a greater quadriceps muscle force. CONCLUSIONS Translations of the PCO in the posterior and anterior directions resulted in negative effects in the PE insert and ligament, and the quadriceps muscle force, respectively. Our findings suggest that orthopaedic surgeons should be careful with regard to the intraoperative conservation of PCO, because an excessive change in PCO may lead to quadriceps weakness and an increase in posterior cruciate ligament tension.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jun-Sang Lee
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
19
|
Park KK, Koh YG, Park KM, Park JH, Kang KT. Biomechanical effect with respect to the sagittal positioning of the femoral component in unicompartmental knee arthroplasty. Biomed Mater Eng 2019; 30:171-182. [PMID: 30741665 DOI: 10.3233/bme-191042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Component malalignment in unicompartmental knee arthroplasty (UKA) has been related to the concentration in tibiofemoral joint of contact stress and to poor post-operative outcomes. Few studies investigated a biomechanical effect of femur component position in sagittal plane. The purpose of this study was to evaluate the biomechanical effect of the femoral components on the sagittal alignment under flexion and extension conditions using computational simulations. METHODS The flexion and extension conditions of the femoral component were analyzed from 10° extension to 10° flexion in 1° increments. We considered the contact stresses in the polyethylene (PE) inserts and articular cartilage, and the force on the collateral ligament, under gait cycle conditions. RESULTS The contact stress on the PE insert increased as flexion of the femoral component increased, but there was not a remarkable difference in the amount of increased contact stress upon extension. There was no difference in the contact stress on the articular cartilage upon extension of the femoral component, but it increased in flexion during stance and double support periods. The forces on the medial collateral ligaments increased with the extension and decreased with the flexion of the femoral component, whereas the forces on the lateral collateral ligaments showed opposite trends. CONCLUSIONS Surgeons should be concerned with femoral component position on UKA not only in frontal plane but also in the sagittal plane, because flexion or extension of the femoral component may impact the PE or opposite compartment along with the surrounding ligaments around knee joint.
Collapse
Affiliation(s)
- Kwan Kyu Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Joon-Hee Park
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Kang KT, Park JH, Koh YG, Shin J, Park KK. Biomechanical effects of posterior tibial slope on unicompartmental knee arthroplasty using finite element analysis. Biomed Mater Eng 2019; 30:133-144. [PMID: 30741662 DOI: 10.3233/bme-191039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The effects of the posterior slope of the tibial prosthesis on unicompartmental knee arthroplasty have not been fully evaluated and controversies still exist. OBJECTIVE This study evaluates the effects of the posterior slope of the tibia on contact stresses in polyethylene inserts and articular cartilage using finite element analysis. METHODS We generated a computational model followed by the development of a posterior tibial slope (PTS) from -1° to 15° cases with increments of 2° PTS models. Using a validated finite element (FE) model, we investigated the influence of the changes in PTS on the contact stress in the medial polyethylene insert and lateral cartilage. The FE model's loading condition is level walking, a normal daily activity. RESULTS The contact stress increased on the lateral articular cartilage as the PTS increased. The contact stress on the polyethylene insert differed from the contact stress on the lateral articular cartilage, and it generally increased as the PTS decreased. However, in the initial stance phase when an axial force was exerted, it increased as the PTS increased. CONCLUSIONS Our results show that an offset of ±2° from the initial anatomical tibial slope does not biomechanically affect the outcome.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Joon-Hee Park
- Department of Anesthesiology & Pain Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jaewon Shin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Koh YG, Park KM, Kang KT. The biomechanical effect of tibiofemoral conformity design for patient-specific cruciate retainging total knee arthroplasty using computational simulation. J Exp Orthop 2019; 6:23. [PMID: 31161463 PMCID: PMC6546798 DOI: 10.1186/s40634-019-0192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/23/2019] [Indexed: 11/28/2022] Open
Abstract
Background Alterations to normal knee kinematics performed during conventional total knee arthroplasty (TKA) focus on the nonanatomic articular surface. Patient-specific TKA was introduced to provide better normal knee kinematics than conventional TKA. However, no study on tibiofemoral conformity has been performed after patient-specific TKA. The purpose of this study was to compare the biomechanical effect of cruciate-retaining (CR) implants after patient-specific TKA and conventional TKA under gait and deep-knee-bend conditions. Methods The examples of patient-specific TKA were categorized into conforming patient-specific TKA, medial pivot patient-specific TKA and anatomy mimetic articular surface patient-specific TKA. We investigated kinematics and quadriceps force of three patient-specific TKA and conventional TKA using validated computational model. The femoral component designs in patient specific TKA were all identical. Results The anatomy mimetic articular surface patient-specific TKA provided knee kinematics that was closer to normal than the others under the gait and deep-knee-bend conditions. However, the other two patient-specific TKA designs could not preserve the normal knee kinematics. In addition, the closest normal quadriceps force was found for the anatomic articular surface patient-specific TKA. Conclusions Our results showed that the anatomy mimetic articular surface patient-specific TKA provided close-to-normal knee mechanics. Other clinical and biomechanical studies are required to determine whether anatomy mimetic articular surface patient-specific TKA restores more normal knee mechanics and provides improved patient satisfaction.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Koh YG, Nam JH, Chung HS, Kim HJ, Chun HJ, Kang KT. Gender differences in morphology exist in posterior condylar offsets of the knee in Korean population. Knee Surg Sports Traumatol Arthrosc 2019; 27:1628-1634. [PMID: 30374575 DOI: 10.1007/s00167-018-5259-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE This study aimed to analyze the morphometric data from magnetic resonance images of arthritic knees in Korean adults, and to identify the existence of morphological differences of femoral posterior condylar offset (PCO) between genders. METHODS The differences in anthropometric PCO data in 975 patients (825 female and 150 male) were evaluated. The distances from the anterior and posterior femoral shaft cortex line to the most posterior femoral condyle tangent line were defined as the anterior-posterior dimension (AP) and the PCO. The PCO ratio (PCOR) was calculated as PCO/AP. RESULTS The medial PCO was greater than the lateral PCO (26.3 ± 2.2 vs. 24.3 ± 2.3 mm, p < 0.01). This difference was observed in both female patients (medial: 26.2 ± 2.2 mm vs. lateral: 24.2 ± 2.2 mm, p < 0.01) and male patients (medial: 26.8 ± 2.3 mm vs. lateral: 24.8 ± 2.4 mm, p < 0.01). The medial and lateral PCO values were also greater in male patients than in female ones (p < 0.01). In contrast, PCOR was greater in female patients than in male ones, both in the medial and lateral femoral condyles (p < 0.01). CONCLUSIONS It was shown that medial and lateral PCO and PCOR were asymmetric, and that there was gender difference in Korean population in our study. In addition, our data showed that the PCOR of contemporary TKAs may be small for Asian patients that may not be sufficient to meet the needs of the Korean patient population. These results confirm that a gender-specific femoral component design is necessary to recreate the PCO for male and female Asian populations. LEVEL OF EVIDENCE Non-consecutive patients, Level III.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Ji-Hoon Nam
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Seok Chung
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Ho-Joong Kim
- Spine Center, Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
23
|
Koh YG, Lee JA, Kim YS, Lee HY, Kim HJ, Kang KT. Optimal mechanical properties of a scaffold for cartilage regeneration using finite element analysis. J Tissue Eng 2019; 10:2041731419832133. [PMID: 30834102 PMCID: PMC6396049 DOI: 10.1177/2041731419832133] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
The development of successful scaffolds for bone tissue engineering requires concurrent engineering that combines different research fields. In previous studies, phenomenological computational models predicted the mechanical properties of a scaffold in a simple loading condition using the mechano-regulation theory. Therefore, the aim of this study is to predict the mechanical properties of an optimum scaffold required for cartilage regeneration using three-dimensional knee joint developed from medical imaging and mechano-regulation theory. It was predicted that the scaffold with optimal mechanical properties would result in greater amounts of cartilage tissue formation than without a scaffold. The results demonstrated the ability of the algorithms to design optimized scaffolds with target properties and confirmed the applicability of set techniques for bone tissue engineering. The scaffolds were optimized to suit the site-specific loading requirements, and the results reveal a new approach for computational simulations in tissue engineering.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong Sang Kim
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Hwa Yong Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Sport and Healthy Aging, Korea National Sport University, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Kang KT, Kwon SK, Kwon OR, Lee JS, Koh YG. Comparison of the biomechanical effect of posterior condylar offset and kinematics between posterior cruciate-retaining and posterior-stabilized total knee arthroplasty. Knee 2019; 26:250-257. [PMID: 30577956 DOI: 10.1016/j.knee.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The effect of the changes in the femoral posterior condylar offset (PCO) on anterior-posterior (AP) translation and internal-external (IE) rotation in cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) remains unknown. The purpose of this study was to compare the kinematics in CR and PS TKA with respect to the difference in prosthetic design and PCO change through a computational simulation. METHODS We developed three-dimensional finite element models with the different PCOs of ±1, ±2 and ±3 mm in the posterior direction using CR and PS TKA. We performed the simulation with different PCOs under a deep knee bend condition and evaluated the kinematics for the AP and IE in CR and PS TKA. RESULTS The more tibiofemoral (TF) translation in the posterior direction was found as PCO translated in posterior direction for both CR and PS TKA compared to the neutral position. However, the change of the AP translation with respect to the PCO change in CR TKA was greater than PS TKA. The more TF external rotation was found as PCO translated in the anterior direction for both CR and PS TKA compared to the neutral position. However, unlike the TF translation, the TF rotation was not influenced by the PCO change in both CR and PS TKA. CONCLUSION The PCO magnitude was influenced by a postoperative change in the kinematics in CR TKA although a relatively smaller effect was observed in PS TKA. Hence, surgeons should be aware of the PCO change, especially for CR TKA.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Jun-Sang Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Koh YG, Son J, Kwon SK, Kim HJ, Kang KT. Biomechanical evaluation of opening-wedge high tibial osteotomy with composite materials using finite-element analysis. Knee 2018; 25:977-987. [PMID: 30446348 DOI: 10.1016/j.knee.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Medial opening-wedge high tibial osteotomy (HTO) has been used to treat osteoarthritis of the medial compartment of the knee. However, this makes the proximal tibia a highly unstable structure and causes the plate to be a potential source of mechanical failure. Consequently, proper design and material use of the fixation device are essential in HTO, especially for overweight or full-weight-bearing patients. METHODS This study investigated the biomechanical effects of the TomoFix plate composed of conventional titanium (Ti) in comparison to plates composed of carbon short-fiber-reinforced (CSFR) polyetheretherketone (PEEK) and carbon long-fiber-reinforced (CLFR) PEEK, in medial opening-wedge HTO. A medial opening was simulated with various HTO plate models subjected to a 2500 N vertical load simulating the peak walking force using a validated knee-joint finite-element (FE) model. The stress on the plate and the bone, the contact stress on the menisci and articular cartilage, as well as wedge micromotion were measured. RESULTS The results of the FE analysis indicated that the Ti plate showed the best functional outcome in terms of micromotion. However, the CSFR PEEK plate showed a positive effect on relieving stress shielding. In addition, there was less contact stress on the meniscus and articular cartilage with the CSFR PEEK plate in comparison to CLFR PEEK and Ti plates. CONCLUSION These results can provide insights into the design of high-performing composite HTO plates to produce more desirable biomechanical effects.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, Republic of Korea
| | - Hyo Jeong Kim
- Department of Sport and Healthy Aging, Korea National Sport University, 1239 Yangjae-daero, Songpa-gu, Seoul 05541, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
26
|
Kang KT, Son J, Kwon SK, Kwon OR, Koh YG. Preservation of femoral and tibial coronal alignment to improve biomechanical effects of medial unicompartment knee arthroplasty: Computational study. Biomed Mater Eng 2018; 29:651-664. [DOI: 10.3233/bme-181015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Juhyun Son
- , Yonsei University, , , , , Republic of Korea
| | | | | | | |
Collapse
|
27
|
Koh YG, Son J, Kwon OR, Kwon SK, Kang KT. Patient-specific design for articular surface conformity to preserve normal knee mechanics in posterior stabilized total knee arthroplasty. Biomed Mater Eng 2018; 29:401-414. [PMID: 30282339 DOI: 10.3233/bme-180998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Contemporary total knee arthroplasty (TKA) provides remarkable clinical benefits. However, the normal function of the knee is not fully restored. Recent improvements in imaging and manufacturing have utilized the development of customized design to fit the unique shape of individual patients. OBJECTIVE The purpose of the present study is to investigate the preservation of normal knee biomechanics by using specific articular surface conformity in customized posterior stabilized (PS)-TKA. METHODS This includes customized PS-TKA, PS-TKA with conforming conformity (CPS-TKA), medial pivot conformity with PS-TKA (MPS-TKA), and PS-TKA with mimetic anatomy femoral and tibial articular surface (APS-TKA). In this study, kinematics, collateral ligament force and quadriceps force were evaluated using a computational simulation under a deep knee bend condition. RESULTS A conventional TKA did not provide the normal internal tibial rotation with flexion leading to abnormal femoral rollback. The APS-TKA exhibited normal-like femoral rollback kinematics but did not exhibit normal internal tibial rotation. However, APS-TKA exhibited the most normal-like collateral ligament and quadriceps forces. CONCLUSIONS Although the APS-TKA exhibited more normal-like biomechanics, it did not restore normal knee biomechanics owing to the absence of the cruciate ligament and post-cam mechanism.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Effects of posterior condylar offset and posterior tibial slope on mobile-bearing total knee arthroplasty using computational simulation. Knee 2018; 25:903-914. [PMID: 29980426 DOI: 10.1016/j.knee.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Postoperative changes of the femoral posterior condylar offset (PCO) and posterior tibial slope (PTS) affect the biomechanics of the knee joint after fixed-bearing total knee arthroplasty (TKA). However, the biomechanics of mobile-bearing is not well known. Therefore, the aim of this study was to investigate whether alterations to the PCO and PTS affect the biomechanics for mobile-bearing TKA. METHODS We used a computational model for a knee joint that was validated using in vivo experiment data to evaluate the effects of the PCO and PTS on the tibiofemoral (TF) joint kinematics, patellofemoral (PF) contact stress, collateral ligament force and quadriceps force, for mobile-bearing TKA. The computational model was developed using ±1-, ±2- and ±3-mm PCO models in the posterior direction and -3°, 0°, +3°, and +6° PTS models based on each of the PCO models. RESULTS The maximum PF contact stress, collateral ligament force and quadriceps force decreased as the PTS increased. In addition, the maximum PF contact stress and quadriceps force decreased, and the collateral ligament force increased as PCO translated in the posterior direction. This trend is consistent with that observed in any PCO and PTS. CONCLUSIONS Our findings show the various effects of postoperative alterations in the PCO and PTS on the biomechanical results of mobile-bearing TKA. Based on the computational simulation, we suggest that orthopaedic surgeons intraoperatively conserve the patient's own anatomical PCO and PTS in mobile-bearing TKA.
Collapse
|
29
|
Kang KT, Kwon SK, Son J, Kwon OR, Lee JS, Koh YG. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2018; 26:3188-3195. [PMID: 29623377 DOI: 10.1007/s00167-018-4925-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/28/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aims to clarify the influence of the posterior tibial slope (PTS) on knee joint biomechanics after posterior-stabilized (PS) total knee arthroplasty (TKA) using a computer simulation. METHODS A validated TKA computational model was used to evaluate and quantify the effects of an increased PTS. In order to conduct a squat simulation, models with a - 3° to 15° PTS using increments of 3° were developed. Forces on the quadriceps and collateral ligament, a tibial posterior translation, contact point on a polyethylene (PE) insert, and contact stress on the patellofemoral (PF) joint and post in a PE insert were compared. RESULTS The maximum force on the quadriceps and the PF contact stress decreased with increases in the PTS. The kinematics on the tibiofemoral (TF) joint translated in an increasingly posterior manner, and the medial and lateral contact points on a PE insert were located in posterior regions with increases in the PTS. Additionally, increases in the PTS decreased the force on the collateral ligament and increased the contact stress on the post in a PE insert. A higher force on the quadriceps is required when the PTS decreases with an equivalent flexion angle. CONCLUSIONS A surgeon should be prudent in terms of determining the PTS because an excessive increase in the PTS may lead to the progressive loosening of the TF joint due to a reduction in collateral ligament tension and failure of the post in a PE insert. Thus, we support a more individualized approach of optimal PTS determination given the findings of the study.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sae Kwang Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Oh-Ryong Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Jun-Sang Lee
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
30
|
Effect of Post-Cam Design for Normal Knee Joint Kinematic, Ligament, and Quadriceps Force in Patient-Specific Posterior-Stabilized Total Knee Arthroplasty by Using Finite Element Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2438980. [PMID: 30327775 PMCID: PMC6169244 DOI: 10.1155/2018/2438980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/22/2018] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to investigate post-cam design via finite element analysis to evaluate the most normal-like knee mechanics. We developed five different three-dimensional computational models of customized posterior-stabilized (PS) total knee arthroplasty (TKA) involving identical surfaces with the exception of the post-cam geometry. They include flat-and-flat, curve-and-curve (concave), curve-and-curve (concave and convex), helical, and asymmetrical post-cam designs. We compared the kinematics, collateral ligament force, and quadriceps force in the customized PS-TKA with five different post-cam designs and conventional PS-TKA to those of a normal knee under deep-knee-bend conditions. The results indicated that femoral rollback in curve-and-curve (concave) post-cam design exhibited the most normal-like knee kinematics, although the internal rotation was the closest to that of a normal knee in the helical post-cam design. The curve-and-curve (concave) post-cam design showed a femoral rollback of 4.4 mm less than the normal knee, and the helical post-cam design showed an internal rotation of 5.6° less than the normal knee. Lateral collateral ligament and quadriceps forces in curve-and-curve (concave) post-cam design, and medial collateral ligament forces in helical post-cam design were the closest to that of a normal knee. The curve-and-curve (concave) post-cam design showed 20% greater lateral collateral ligament force than normal knee, and helical post-cam design showed medial collateral ligament force 14% greater than normal knee. The results revealed the variation in each design that provided the most normal-like biomechanical effect. The present biomechanical data are expected to provide useful information to improve post-cam design to restore normal-like knee mechanics in customized PS-TKA.
Collapse
|
31
|
Comparison of Kinematics in Cruciate Retaining and Posterior Stabilized for Fixed and Rotating Platform Mobile-Bearing Total Knee Arthroplasty with respect to Different Posterior Tibial Slope. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5139074. [PMID: 29992149 PMCID: PMC6016153 DOI: 10.1155/2018/5139074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/23/2022]
Abstract
Reconstructed posterior tibial slope (PTS) plays a significant role in kinematics restoration after total knee arthroplasty (TKA). However, the effect of increased and decreased PTS on prosthetic type and design has not yet been investigated. We used a finite element model, validated using in vitro data, to evaluate the effect of PTS on knee kinematics in cruciate-retaining (CR) and posterior-stabilized (PS) fixed TKA and rotating platform mobile-bearing TKA. Anterior-posterior tibial translation and internal-external tibial rotation were investigated for PTS ranging from -3° to 15°, with increments of 1°, for three different designs of TKA. Tibial posterior translation and external rotation increased as the PTS increased in both CR and PS TKAs. In addition, there was no remarkable difference in external rotation between CR and PS TKAs. However, for the mobile-bearing TKA, PTS had less effect on the kinematics. Based on our computational simulation, PTS is the critical factor that influences kinematics in TKA, especially in the CR TKA. Therefore, the surgeon should be careful in choosing the PTS in CR TKAs.
Collapse
|
32
|
Kang KT, Son J, Koh YG, Kwon OR, Kwon SK, Lee YJ, Park KK. Effect of femoral component position on biomechanical outcomes of unicompartmental knee arthroplasty. Knee 2018; 25:491-498. [PMID: 29685501 DOI: 10.1016/j.knee.2018.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The positions of unicompartmental femoral components do not always follow the neutral center of the medial distal femoral condyle. The biomechanical effect of the center of the distal femoral condyle has not yet been evaluated, and the optimal femoral position in unicompartmental knee arthroplasty (UKA) is yet to be biomechanically justified. The purpose of this study was to evaluate, using finite element analysis, the effect of the center of the distal femoral component on the biomechanical outcomes of UKA with respect to the contact stresses in the polyethylene (PE) insert and articular cartilage. METHODS Five models in which the centers of the distal femoral components were translated by three millimeters and five millimeters to the medial and lateral sides, respectively, from the neutral position were modeled and analyzed in a gait loading condition. RESULTS The contact stresses on the PE insert increased as the center of the femoral component translated to the lateral side and, in contrast, the contact stresses decreased as it translated to the medial side. For the articular cartilage the contact stresses increased and decreased as the center of the femoral component translated to the medial and lateral sides. CONCLUSION This study implied that the best position for the femoral component in UKA could be the center of the distal femoral condyle. Femoral component position could be one of the sensitive factors that influenced the contact stresses on the PE insert and articular cartilage, and the postoperative significance of the femoral component position in UKA.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yong Jun Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Femoral component alignment in unicompartmental knee arthroplasty leads to biomechanical change in contact stress and collateral ligament force in knee joint. Arch Orthop Trauma Surg 2018; 138:563-572. [PMID: 29356941 DOI: 10.1007/s00402-018-2884-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND In recent years, the popularity of unicompartmental knee arthroplasty (UKA) has increased. However, the effect of femoral component positioning in UKA continues to invite a considerable debate. The purpose of this study involved assessing the biomechanical effect of mal-alignment in femoral components in UKA under dynamic loading conditions using a computational simulation. METHODS A validated finite element model was used to evaluate contact stresses in polyethylene (PE) inserts and lateral compartment and force on collateral ligament in the femoral component ranging from 9° of varus to 9° of valgus. RESULTS The results indicated that contact stress on the PE insert increased with increases in the valgus femoral alignment when compared to the neutral position while contact stress on the lateral compartment increased with increases in the varus femoral alignment. The forces on medial and lateral collateral ligaments increased with increases in valgus femoral alignments when compared to the neutral position. However, there was no change in popliteofibular and anterior lateral ligaments with respect to the malpositioning of femoral component. CONCLUSION The results of the study confirm the importance of conservation in post-operative accuracy of the femoral component since the valgus and varus femoral malalignments affect the collateral ligament and lateral compartment, respectively. Our results suggest that surgeons should avoid valgus malalignment in the femoral component and especially malalignment exceeding 9°, which may induce higher medial collateral ligament forces.
Collapse
|
34
|
Kang KT, Koh YG, Son J, Jung M, Oh S, Kim SJ, Kim SH. Biomechanical influence of deficient posterolateral corner structures on knee joint kinematics: A computational study. J Orthop Res 2018; 36:2202-2209. [PMID: 29436742 DOI: 10.1002/jor.23871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023]
Abstract
The posterolateral corner (PLC) structures including the popliteofibular ligament (PFL), popliteus tendon (PT) and lateral collateral ligament (LCL) are important soft tissues for posterior translational, external rotational, and varus angulation knee joint instabilities. The purpose of this study was to determine the effects of deficient PLC structures on the kinematics of the knee joint under gait and squat loading conditions. We developed subject-specific computational models with full 12-degree-of-freedom tibiofemoral and patellofemoral joints for four male subjects and one female subject. The subject-specific knee joint models were validated with computationally predicted muscle activation, electromyography data, and experimental data from previous study. According to our results, deficiency of the PFL did not significantly influence knee joint kinematics compared to an intact model under gait loading conditions. Compared with an intact model under gait and squat loading conditions, deficiency of the PT led to significant increases in external rotation and posterior translation, while LCL deficiency increased varus angulation. Deficiency of all PLC structures led to the greatest increases in external rotation, varus angulation, and posterior translation. These results suggest that the PT is an important structure for external rotation and posterior translation, while the LCL is important for varus angulation under dynamic loading conditions. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-8, 2018.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonki Jung
- AnyBody Technology A/S, 10 Niels Jernes Vej, Aalborg, 9220, Denmark
| | - Sangyun Oh
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sung-Jae Kim
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| |
Collapse
|
35
|
Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. Influence of Increased Posterior Tibial Slope in Total Knee Arthroplasty on Knee Joint Biomechanics: A Computational Simulation Study. J Arthroplasty 2018; 33:572-579. [PMID: 29017801 DOI: 10.1016/j.arth.2017.09.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The reconstructed posterior tibial slope (PTS) plays a significant role in restoring knee kinematics in cruciate-retaining-total knee arthroplasty (TKA). A few studies have reported the effect of the PTS on biomechanics. METHODS This study investigates the effect of the PTS on tibiofemoral (TF) kinematics, patellofemoral (PF) contact stress, and forces at the quadriceps, posterior cruciate ligament (PCL) and collateral ligament after cruciate-retaining-TKA using computer simulations. The simulation for the validated TKA finite element model was performed under deep knee bend condition. All analyses were repeated from -3° to 15° PTS in increments of 3°. RESULTS The kinematics on the TF joint translated increasingly posteriorly when the PTS increased. Medial and lateral contact points translated in posterior direction in extension and flexion as PTS increased. The maximum contact stress on the PF joint and quadriceps, and collateral ligament force decreased when the PTS increased. An implantation of the tibial plate with increased PTS reduced the PCL load. Physiologic insert movement led to an increasingly posterior position of the femur and reduced quadriceps force especially for knee flexion angles above high flexion (120°) when compared to TKA with a decreased slope of the tibial base plate. CONCLUSION An increase in the PTS increased medial and lateral movements without paradoxical motion. However, an excessive PTS indicated progressive loosening of the TF joint gap due to a reduction in collateral ligament tension during flexion.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jun-Sang Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae-Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
36
|
Kang KT, Son J, Suh DS, Kwon SK, Kwon OR, Koh YG. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018; 7:20-27. [PMID: 29305427 PMCID: PMC5805830 DOI: 10.1302/2046-3758.71.bjr-2017-0115.r2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient's own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. METHODS The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. RESULTS The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. CONCLUSION The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis.Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20-27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2.
Collapse
Affiliation(s)
- K-T. Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - J. Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - D-S. Suh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - S. K. Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - O-R. Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - Y-G. Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| |
Collapse
|
37
|
Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018; 7:69-78. [PMID: 29330345 PMCID: PMC5805829 DOI: 10.1302/2046-3758.71.bjr-2017-0143.r1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objectives Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018;7:69–78. DOI: 10.1302/2046-3758.71.BJR-2017-0143.R1.
Collapse
Affiliation(s)
- K-T Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Y-G Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - J Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - O-R Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - J-S Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - S K Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| |
Collapse
|
38
|
Biomechanical Effects of Posterior Condylar Offset and Posterior Tibial Slope on Quadriceps Force and Joint Contact Forces in Posterior-Stabilized Total Knee Arthroplasty. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4908639. [PMID: 29349074 PMCID: PMC5733759 DOI: 10.1155/2017/4908639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/14/2017] [Accepted: 10/25/2017] [Indexed: 11/24/2022]
Abstract
This study aimed to determine the biomechanical effect of the posterior condylar offset (PCO) and posterior tibial slope (PTS) in posterior-stabilized (PS) fixed-bearing total knee arthroplasty (TKA). We developed ±1, ±2, and ±3 mm PCO models in the posterior direction and −3°, 0°, 3°, and 6° PTS models using a previously validated FE model. The influence of changes in the PCO and PTS on the biomechanical effects under deep-knee-bend loading was investigated. The contact stress on the PE insert increased by 14% and decreased by 7% on average as the PCO increased and decreased, respectively, compared to the neutral position. In addition, the contact stress on post in PE insert increased by 18% on average as PTS increased from −3° to 6°. However, the contact stress on the patellar button decreased by 11% on average as PTS increased from −3° to 6° in all different PCO cases. The quadriceps force decreased by 14% as PTS increased from −3° to 6° in all PCO models. The same trend was found in patellar tendon force. Changes in PCO had adverse biomechanical effects whereas PTS increase had positive biomechanical effects. However, excessive PTS should be avoided to prevent knee instability and subsequent failure.
Collapse
|
39
|
Suh DS, Kang KT, Son J, Kwon OR, Baek C, Koh YG. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017; 6:623-630. [PMID: 29162607 PMCID: PMC5717075 DOI: 10.1302/2046-3758.611.bjr-2016-0088.r2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
Objectives Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2.
Collapse
Affiliation(s)
- D-S Suh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeongro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - K-T Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - J Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - O-R Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeongro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - C Baek
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeongro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Y-G Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeongro, Seocho-gu, Seoul, 06698, Republic of Korea
| |
Collapse
|
40
|
Koh YG, Son J, Kwon SK, Kim HJ, Kwon OR, Kang KT. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017; 6:557-565. [PMID: 28947604 PMCID: PMC5631000 DOI: 10.1302/2046-3758.69.bjr-2016-0250.r1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Objectives Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1.
Collapse
Affiliation(s)
- Y-G Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - J Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - S-K Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - H-J Kim
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beongil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, South Korea
| | - O-R Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - K-T Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
41
|
Kang KT, Koh YG, Son J, Kim SJ, Choi S, Jung M, Kim SH. Finite Element Analysis of the Biomechanical Effects of 3 Posterolateral Corner Reconstruction Techniques for the Knee Joint. Arthroscopy 2017; 33:1537-1550. [PMID: 28454998 DOI: 10.1016/j.arthro.2017.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the forces exerted on the cruciate ligaments and the contact stresses on the tibiofemoral (TF) and patellofemoral (PF) joints with respect to 3 different tibial- and fibular-based posterolateral corner (PLC) reconstructions under dynamic loading conditions. METHODS A subject-specific finite element knee model was developed by using 3-dimensional anatomic data from motion captures in gait and squat activities, including in vivo knee joint kinematics and muscle forces for the single subject. Cruciate ligament forces and contact stresses on the TF and PF joints under 3 PLC reconstruction techniques (tibial-based, TBR; modified fibular-based, mFBR; conventional fibular-based, cFBR) and PLC-deficient models were compared with those of the intact model in gait and squat loading conditions. RESULTS The cruciate ligament forces in the 3 surgical models differed from those in the intact model. The greatest differences in ligament forces from the intact model were found in the cFBR model, whereas there were no remarkable differences between the TBR and mFBR models in both gait and squat loading conditions. Contact stresses on the lateral TF and PF joints of the 3 surgical models were greater than those of the intact model under the squat loading condition. CONCLUSIONS The biomechanical effects achieved using the anatomic reconstruction technique were found to be improved compared with those using nonanatomic reconstruction techniques. However, the ligament forces and contact stresses under normal conditions could not be restored through any of the 3 techniques. CLINICAL RELEVANCE Anatomic TBR and FBR for grade III PLC injuries could restore better biomechanics in the knee joint compared with nonanatomic reconstruction. However, discrepancy with the normal condition requires further modification of surgical techniques.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sung-Jae Kim
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sungryul Choi
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | | | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:183. [PMID: 27787809 DOI: 10.1007/s10856-016-5797-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The objective of this paper was to evaluate in vivo material properties in order to address technical aspects of computational modeling of ligaments in the tibiofemoral joint using a probabilistic method. The laxity test was applied to the anterior-posterior drawer under 30° and 90° of flexion with a series of stress radiographs, a Telos device, and computed tomography. Ligament stiffness was investigated using sensitivity analysis based on the Monte-Carlo method with a subject-specific finite element model generated from in vivo computed tomography and magnetic resonance imaging data, subjected to laxity test conditions. The material properties of ligament stiffness and initial ligament strain in a subject-specific finite element model were optimized to minimize the differences between the movements of the tibia and femur in the finite element model and the computed tomography images in the laxity test. The posterior cruciate ligament was the most significant factor in flexion and posterior drawer, while the anterior cruciate ligament primarily was the most significant factor for the anterior drawer. The optimized material properties model predictions in simulation and the laxity test were more accurate than predictions based on the initial material properties in subject-specific computed tomography measurement. Thus, this study establishes a standard for future designs in allograft, xenograft, and artificial ligaments for anterior cruciate ligament and posterior cruciate ligament injuries.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, Medical Convergence Research Institute, and Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
43
|
Kang KT, Koh YG, Son J, Kwon OR, Baek C, Jung SH, Park KK. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016; 5:552-559. [PMID: 28094763 PMCID: PMC5131092 DOI: 10.1302/2046-3758.511.bjr-2016-0107.r1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1.
Collapse
Affiliation(s)
- K-T Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Y-G Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - J Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - O-R Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - C Baek
- Department of Mechanical and Control Engineering, The Cyber University of Korea, Seoul, Republic of Korea
| | - S H Jung
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - K K Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|