1
|
Zhao C, Li Y, Peng G, Lei X, Zhang G, Gao Y. Decellularized liver matrix-modified chitosan fibrous scaffold as a substrate for C3A hepatocyte culture. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1041-1056. [PMID: 32162599 DOI: 10.1080/09205063.2020.1738690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A bioreactor filled with functional hepatocytes is a crucial portion of the bio-artificial liver device. However, it is a difficult task to maintain sufficient cell quantity and active hepatocellular function. In this work, we developed a promising scaffold for hepatocyte culture by coating porcine liver extracellular matrix (ECM) on chitosan (CTS) fabrics. Porcine Liver was decellularized using 1% Triton X-100. Solubilized liver ECM was immobilized on CTS fibers surface through cross linking of ECM and CTS with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS). Then the scaffold was characterized by Fourier transformed infrared spectroscopy in attenuated total reflection mode (ATR-FTIR), X-photoelectron spectroscopy (XPS) and water contact angle measurement. The efficacy of modified scaffolds to maintain C3A hepatocytes adhesion, proliferation, bioactivity and functionality in vitro was detected. FTIR spectra and XPS demonstrated the presence of ECM coating on CTS fabric surface. Covalently attached coating significantly improved the binding efficiency between ECM and CTS fabrics, in comparison to the coating by physical absorption. Furthermore, C3A hepatocytes cultured on coated scaffolds showed enhanced cell bioactivity and liver-specific function, such as albumin secretion and urea synthesis, compared with those cultured on untreated scaffolds(p < 0.05). As a promising hepatocyte culture carrier, the ECM coated CTS fabrics could be applied in the biological artificial liver reactor.
Collapse
Affiliation(s)
- Chaochen Zhao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Gongze Peng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong Province, China
| | - Xiongxin Lei
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhang H, Liu C, Chen L, Dai B. Control of ice crystal growth and its effect on porous structure of chitosan cryogels. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Mathew BT, Raji S, Dagher S, Hilal-Alnaqbi A, Mourad AHI, Al-Zuhair S, Al Ahmad M, El-Tarabily KA, Amin A. Bilirubin detoxification using different phytomaterials: characterization and in vitro studies. Int J Nanomedicine 2018; 13:2997-3010. [PMID: 29872292 PMCID: PMC5973425 DOI: 10.2147/ijn.s160968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Activated carbon (AC) is a common adsorbent that is used in both artificial and bioartificial liver devices. METHODS Three natural materials - date pits of Phoenix dactylifera (fruit), Simmondsia chinensis (jojoba) seeds, and Scenedesmus spp. (microalgae) - were used in the present investigation as precursors for the synthesis of AC using physical activation. The chemical structures and morphology of AC were analyzed. Then, AC's bilirubin adsorption capacity and its cytotoxicity on normal liver (THLE2) and liver cancer (HepG2) cells were characterized. RESULTS Compared with the other raw materials examined, date-pit AC was highly selective and showed the most effective capacity of bilirubin adsorption, as judged by isotherm-modeling analysis. MTT in vitro analysis indicated that date-pit AC had the least effect on the viability of both THLE2 and HepG2 cells compared to jojoba seeds and microalgae. All three biomaterials under investigation were used, along with collagen and Matrigel, to grow cells in 3D culture. Fluorescent microscopy confirmed date-pit AC as the best to preserve liver cell integrity. CONCLUSION The findings of this study introduce date-pit-based AC as a novel alternative biomaterial for the removal of protein-bound toxins in bioartificial liver devices.
Collapse
Affiliation(s)
- Betty Titus Mathew
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Raji
- Electrical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sawsan Dagher
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Hilal-Alnaqbi
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
- Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| | - Abdel-Hamid Ismail Mourad
- Mechanical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
- Mechanical Design Department, Faculty of Engineering, Helwan University, Helwan, Cairo, Egypt
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahmoud Al Ahmad
- Electrical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled Abbas El-Tarabily
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Zoology/College of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Damania A, Kumar A, Teotia AK, Kimura H, Kamihira M, Ijima H, Sarin SK, Kumar A. Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:114-126. [PMID: 29210278 DOI: 10.1021/acsami.7b13727] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30-60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20-60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications.
Collapse
Affiliation(s)
- Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| | - Anupam Kumar
- Institute of Liver and Biliary Sciences , Vasant Kunj, New Delhi 110070, India
| | - Arun K Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| | - Haruna Kimura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences , Vasant Kunj, New Delhi 110070, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| |
Collapse
|