1
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
2
|
Herzer R, Gebert A, Hempel U, Hebenstreit F, Oswald S, Damm C, Schmidt OG, Medina-Sánchez M. Rolled-Up Metal Oxide Microscaffolds to Study Early Bone Formation at Single Cell Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005527. [PMID: 33599055 DOI: 10.1002/smll.202005527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Titanium and its alloys are frequently used to replace structural components of the human body due to their high mechanical strength, low stiffness, and biocompatibility. In particular, the use of porous materials has improved implant stabilization and the promotion of bone. However, it remains unclear which material properties and geometrical cues are optimal for a proper osteoinduction and osseointegration. To that end, transparent tubular microscaffolds are fabricated, mimicking the typical pores of structural implants, with the aim of studying early bone formation and cell-material interactions at the single cell level. Here, a β-stabilized alloy Ti-45Nb (wt%) is used for the microscaffold's fabrication due to its elastic modulus close to that of natural bone. Human mesenchymal stem cell migration, adhesion, and osteogenic differentiation is thus investigated, paying particular attention to the CaP formation and cell-body crystallization, both analyzed via optical and electron microscopy. It is demonstrated that the developed platform is suited for the long-term study of living single cells in an appropriate microenvironment, obtaining in the process deeper insights on early bone formation and providing cues to improve the stability and biocompatibility of current structural implants.
Collapse
Affiliation(s)
- Raffael Herzer
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Annett Gebert
- Institute for Complex Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Ute Hempel
- Institut für Physiologische Chemie, MTZ, Medizinische Fakultät der TU Dresden, Fiedlerstraße 42, Dresden, 01307, Germany
| | - Franziska Hebenstreit
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Steffen Oswald
- Institute for Complex Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Christine Damm
- Institute for Metallic Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, Chemnitz, 09126, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| |
Collapse
|
3
|
Schmidt R, Gebert A, Schumacher M, Hoffmann V, Voss A, Pilz S, Uhlemann M, Lode A, Gelinsky M. Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110425. [DOI: 10.1016/j.msec.2019.110425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023]
|